• 제목/요약/키워드: Growth Velocity

검색결과 488건 처리시간 0.029초

Essence of thermal convection for physical vapor transport of mercurous chloride in regions of high vapor pressures

  • Kim, Geug-Tae;Lee, Kyong-Hwan;Choi, Jeong-Gil
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • 제17권6호
    • /
    • pp.231-237
    • /
    • 2007
  • For an aspect ratio (transport length-to-width) of 5, Pr=3.34, Le=0.078, Pe=4.16, Cv=1.01, $P_B=50$ Torr, only thermally buoyancy-driven convection ($Gr=4.83{\times}10^5$) is considered in this study in spite of the disparity in the molecular weights of the component A ($Hg_2Cl_2$) and B which would cause thermally and/or solutally buoyancy-driven convection. The crystal growth rate and the maximum velocity vector magnitude are decreased exponentially for $3{\le}Ar{\le}5$, for (1) adiabatic walls and (2) the linear temperature profile, with a fixed source temperature. This is related to the finding that the effects of side walls tend to stabilize convection in the growth reactor. The rate for the linear temperature profiles walls is slightly greater than for the adiabatic walls far varied temperature differences and aspect ratios. With the imposed thermal profile, a fixed source region, both the rate and the maximum velocity vector magnitude increase linearly with increasing the temperature difference for $10{\le}{\Delta}T{\le}50K$.

A Study of Development Methods of Fatigue Life Improvement for the Suspension Material (현가장치재의 피로수명향상 공법개발에 관한 연구)

  • 박경동;정찬기
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • 제12권1호
    • /
    • pp.196-202
    • /
    • 2004
  • The development of new materials with light weight and high strength has become vital to the machinery, aircraft and auto industries. However, there are a lot of problems with developing such materials that require expensive tools, and a great deal of time and effort. Therefore, the improvement of fatigue strength and fatigue life are mainly focused on adopting residual stress(in this thesis). The compressive residual stress was imposed on the surface according to each shot velocity(57, 70, 83, 96 m/sec) based on Shot-peening, which is the method of improving fatigue life and strength. By using the methods mentioned above, the following conclusions have been drawn. 1. The fatigue crack growth rate(da/dN) of the Shot-peened material was lower than that of the Un-peened material. And in stage I, ΔKth, the threshold stress intensity factor, of the shot-peen processed material is high in critical parts unlike the Un-peened material. Also m, fatigue crack growth exponent and number of cycle of the Shot-peened material was higher than that of the Un-peened material. That is concluded from effect of da/dN. 2. Fatigue life shows more improvement in the Shot-peened material than in the Un-peened material. And compressive residual stress of surface on the Shot-peen processed operate resistance force of fatigue crack propagation.

A Study on the Effect of Shot Velocity by Shot Peening on fatigue Crack Growth Property for Marine Structural Steel (해양구조용강의 피로크랙진전특성에 미치는 쇼트피닝 투사속도의 영향)

  • 박경동;노영석
    • Journal of Ocean Engineering and Technology
    • /
    • 제17권2호
    • /
    • pp.47-53
    • /
    • 2003
  • The development of new materials with light weight and high strength has become vital to the machinery, aircraft and auto industries. However, there are a lot of problems with developing such materials that require such expensive tools, as well as a great deal of time and effort. Therefore, the improvement of fatigue life through, the adoption of residual stress, is the main focus. The compressive residual stress was imposed on the surface according to each shot velocity(1800, 2200, 2600, 3000rpm) based on Shot-peening, which is the method of improving fatigue life and strength. By using the methose mentioned above, we arrived at the following conclusions; 1. The fatigue crack growth rate(da/dN) of the Shot-peened material was lower than that of the Un-peened material. In stage I, $\Delta$K$_{th}$, the threshold stress intensity factor, of the shot-peen processed material is high in critical parts, unlike the Un-peened material. Also m, fatigue crack growth exponent and number of cycle of the Shot-peened material was higher than of the Un-peened material. That is concluded from effect of da/dN. 2. Fatigue life shows more improvement in the Shot-peened material than in the Un-peened material. Compressive residual stress of the surface on the Shot-peen processed operate resistance force of fatigue crack propagation.

Analyzing the Effect of Climatic Variables on Growth and Yield of Rice in Chuncheon Region (춘천지역의 기상요소가 벼 생육과 수량에 미치는 영향 해석)

  • Lee, An-Soo;Kim, Jae-Rok;Cho, Youn-Sang;Kim, Yong-Bog;Ham, Jin-Kwan;Jeong, Jeong-Su;Sa, Jong-Gu;Shin, Jin-Chul
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • 제56권2호
    • /
    • pp.99-106
    • /
    • 2011
  • Here we reported an analyzing result for the relationship between climatic variables and rice(c.v. Odaebyeo and Ilpumbyeo) yield characteristics (including some growth characteristics) based on a long-term observed data at GARES and at KMA for rice and weather, respectively. Most of crop parameters investigated, such as heading date, culm height, panicle number $m^{-2}$, grain number $panicle^{-1}$ ripening rate, 1,000 grain weight and yield were strongly affected by wind velocity and relative humidity, as well as by daily mean air temperature, precipitation, sunshine hours and daily variations in air temperature depending on variety and crop developmental stages. Air velocity and relative humidity had not been studied as climatic variables affecting on the characteristics of rice growth and yield, however, they turned out to affect all the characteristics of rice investigated, especially ripening rate and yield, as much as any other climatic variables in this study. Air velocity appeared to affect highly the culm height and yield of Odaebyeo and ilpumbyeo. Relative humidity appeared to affect highly grain number and ripening rate of Odaebyeo and yield of Ilpumbyeo. Consequently Rice yield revealed to increase in the climatic conditions of high air velocity and low relative humidity.

The Effect of Transverse Magnetic field on Macrosegregation in vertical Bridgman Crystal Growth of Te doped InSb

  • Lee, Geun-Hee;Lee, Zin-Hyoung
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 한국결정성장학회 1996년도 The 9th KACG Technical Annual Meeting and the 3rd Korea-Japan EMGS (Electronic Materials Growth Symposium)
    • /
    • pp.522-522
    • /
    • 1996
  • An investigation of the effects of transverse magnetic field and Peltier effect on melt convection and macrosegregation in vertical Bridgman crystal grosth of Te doped InSb was been carried out by means of microstructure observation, Hall measurement, electrical resistivity measurement and X-ray analysis. Before the experiments, Interface stability, convective instability and suppression of convection by magnetic field were calculated theoretically. After doping 1018, 1019 cm-3 Te in InSb, the temperature of Bridgman furnace was set up at $650^{\circ}C$. The samples were grown in I.D. 11mm, 100mm high quartz tube. The velocity of growth was about 2${\mu}{\textrm}{m}$/sec. In order to obtain the suppression of convection by magnetic field in the middle of growth, 2-4KG magnetic field was set on the melt. For searching of the shape of solid-liquid interface and the actual velocity of crystal growth, let 2A current flow from solid to liquid for 1second every 50seconds repeatedly (Peltier effect). The grown InSb was polycrystal, and each grain was very sharp. There was no much difference between the sample with and without magnetic field at a point of view of microstructure. For the sample with Peltier effect, the Peltier marks(striation) were observed regularly as expected. Through these marks, it was found that the solid-liquid interface was flat and the actual growth velocity was about 1-2${\mu}{\textrm}{m}$/sec. On the ground of theoretical calculation, there is thermosolutal convection in the Te doped InSb melt without magnetic field in this growth condition. and if there is more than 1KG magnetic field, the convection is suppressed. Through this experiments, the effective distribution coefficients, koff, were 0.35 in the case of no magnetic field, and 0.45 when the magnetic field is 2KG, 0.7 at 4KG. It was found that the more magnetic field was applied, the more convection was suppressed. But there was some difference between the theoretical calculation and the experiment, the cause of the difference was thought due to the use of some approximated values in theoretical calculation. In addition to these results, the sample with Peltier effect showed unexpected result about the Te distribution in InSb. It looked like no convection and no macrosegregation. It was thought that the unexpected behavior was due to Peltier mark. that is, when the strong current flew the growing sample, the mark was formed by catching Te. As a result of the phenomena, the more Te containing thin layer was made. The layer ruled the Hall measurement. The values of resistivity and mobility of these samples were just a little than those of other reference. It was thought that the reason of this result was that these samples were due to polycrystal, that is, grain boundaries had an influence on this result.

  • PDF

Estimation on Physical Habitat Suitability of Benthic Macroinvertebrates in the Hwayang Stream (화양천 저서성 대형무척추동물의 물리적 서식처 적합도 산정)

  • Kim, Ye Ji;Kong, Dongsoo
    • Journal of Korean Society on Water Environment
    • /
    • 제34권1호
    • /
    • pp.10-25
    • /
    • 2018
  • This study was conducted to estimate the habitat suitability of 17 benthic macroinvertebrate taxa in the Hwayang stream. Habitat Suitability Index (HSI) of benthic macroinvertebrates from the Hwayang stream was developed based on three physical habitat factors which include current velocity, water depth, and the substrate. The Weibull model was used as a probability density function to analyze the distribution of individual abundance by physical factors. The number of species and the total individual abundance increased along with the increase in current velocity. By means of Canonical Correspondence Analysis (CCA), the relative importance of each factor was determined in the following order: current velocity, water depth, and the mean diameter. The results depicted that, the most influential factor in the growth of benthic macroinvertebrates in the Hwavang system was current velocity. After comparing the analyzed results from the Hwayang stream with the resukts from the Gapyeong stream, the integrated HSI was drawn. The results indicated that current velocity and substrate had similar distributions of HSI in the two streams. This was due to the addition of unmeasured data from previous surveys, or the fact that benthic macroinvertebrates adapted to deeper waters in the Hwayang Stream. Most taxa showed a clear preference for a fast current velocity, deep water depth and coarse substrate except Baetiella, Epeorus, (mayflies), and Hydropsyche (caddisfly).

LAMINAR FLOW IN THE ENTRANCE REGION OF HELICAL TUBES FOR UNIFORM INLET VELOCITY CONDITIONS (균일입구유속 조건의 나선관 입구영역의 층류 유동)

  • Kim, Y.I.;Park, J.H.
    • Journal of computational fluids engineering
    • /
    • 제13권1호
    • /
    • pp.21-27
    • /
    • 2008
  • A numerical study for laminar flow in the entrance region of helical tubes for uniform inlet velocity conditions is carried out by means of the finite volume method to investigate the effects of Reynolds number, pitch and curvature ratio on the flow development. This results cover a curvature ratio range of 1/10$\sim$1/320, a pitch range of 0.0$\sim$3.2, and a Reynolds number range of 125$\sim$2000. It has been found that the curvature ratio does significantly effect on the angle of flow development, but the pitch and Reynolds number do not. The characteristic angle $\phi_c(=\phi/\sqrt{\delta})$, or the non-dimensional length $\overline{l}(=l\sqrt{\delta}cos(atan\lambda)/d)$ can be used to represent the flow development for uniform inlet velocity conditions. In uniform inlet velocity conditions, the growth of boundary layer delays the flow development attributed to centrifugal force, and in which conditions the amplitude of flow oscillations is smaller than that in parabolic inlet velocity conditions. If the pitch increases or if the curvature ratio or Reynolds number decreases, the minimum friction factor and the fully developed average friction factor normalized with the friction factor of a straight tube and the flow oscillations decrease.

Parallel Crack with Constant Velocity in Two Bonded Anisotropic Strip Under Anti-Plane Deformation (두 이방성 띠판에 내재된 면외변형하의 등속평행 균열)

  • Park, Jae-Wan;Kim, Nam-Hun;Choe, Seong-Ryeol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • 제24권2호
    • /
    • pp.496-505
    • /
    • 2000
  • A semi-infinite parallel crack propagated with constant velocity in two bonded anisotropic strip under anti-plane clamped displacement is analyzed. Using Fourier integral transform a Wiener-Hopf equation is derived. By solving this equation the asymptotic stress and displacement fields near the crack tip are determined, where the results give the more general expression applicable to the extent of the anisotropic material having one plane of elastic symmetry for the parallel crack. The dynamic stress intensity factor and energy release rate are also obtained as a closed form, which are the results applicable to the problem both of dynamic and static crack under the same geometry as this study. The stress intensity factor approaches zero at the critical crack velocity which is less than the shear wave velocity, but in typical case of isotropic or orthotropic material agrees with the velocity of shear wave. Also a circular shear stress around crack tip is considered, from which the stress is shown to be approximately symmetric about the horizontal axis. Referring to the maximum stress criteria, it could be shown that a brenched crack is formed by crack growth as crack velocity increases.

SMBH Mass Estimate Discrepancy and Its Origin of NGC 6861

  • Jang, Minsung;Owers, Matt
    • The Bulletin of The Korean Astronomical Society
    • /
    • 제37권2호
    • /
    • pp.69.2-69.2
    • /
    • 2012
  • NGC 6861 is the brightest S0 galaxy in the Telescopium group. It has unusually high central stellar velocity dispersion (~400 km/s) and clear rotation (~250 km/s). Considering the well-known M-sigma relation, this large central dispersion implies that the central supermassive black hole (SMBH) has mass comparable to the most massive black holes in the Universe. However, the mass implied by the bulge luminosity-SMBH mass relation is an order of magnitude lower than that predicted by the M-sigma relation. In order to determine the origin of this inconsistency, we obtain integral field spectroscopy using the Wide Field Spectrograph (WiFeS) on the ANU 2.3m telescope. The data are used to map the velocity and velocity dispersion fields which show that our measurements are consistent with those from the other literature. The large field of view the WiFeS observations have allows us to map the kinematics of a much greater portion of NGC 6861 and reveals that the eastern part of the galaxy has higher velocity and dispersion than the rest of halo. We discuss the origin of the unusual fast rotation and the discrepancy of two SMBH mass estimations from three plausible perspectives: 1) the interaction between subgroups of NGC 6861 and its counterpart, NGC 6868; 2) the inhibited growth of the stellar bulge by the AGN activity which leads to an underestimate the SMBH mass when using the bulge luminosity-SMBH mass relation; and 3) gas rich minor mergers that could be crucial for increasing both rotation velocity and velocity dispersion during the evolution of NGC 6861.

  • PDF

Gas phase temperature profile measurement of an upflow OMVPE reactor by laser Raman spectroscopy (레이저 라만 분광법을 이용한 도립형 OMVPE 반응기의 기상 온도 분포 측정)

  • ;Timothy J. Anderson
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • 제8권3호
    • /
    • pp.448-453
    • /
    • 1998
  • An inverted, stagnation point flow OMVPE reactor was studied by laser Raman spectroscopy. Pure rotational Raman scattering by the carrier gas $(N_2; or; H_2)$ was used to determine the axial centerline temperature profile in the reactor as a function of the inlet flow velocity and the rector aspect ratio. A larger temperature gradient normal to the susceptor surface was obtained with higher gas glow velocity, larger aspect ratio, and the use of a $N_2$ carrier gas.

  • PDF