• Title/Summary/Keyword: Growth Promoter

Search Result 459, Processing Time 0.031 seconds

Epigenetic role of nuclear S6K1 in early adipogenesis

  • Yi, Sang Ah;Han, Jihoon;Han, Jeung-Whan
    • BMB Reports
    • /
    • v.49 no.8
    • /
    • pp.401-402
    • /
    • 2016
  • S6K1 is a key regulator of cell growth, cell size, and metabolism. Although the role of cytosolic S6K1 in cellular processes is well established, the function of S6K1 in the nucleus remains poorly understood. Our recent study has revealed that S6K1 is translocated into the nucleus upon adipogenic stimulus where it directly binds to and phosphorylates H2B at serine 36. Such phosphorylation promotes EZH2 recruitment and subsequent histone H3K27 trimethylation on the promoter of its target genes including Wnt6, Wnt10a, and Wnt10b, leading to repression of their expression. S6K1-mediated suppression of Wnt genes facilitates adipogenic differentiation through the expression of adipogenic transcription factors PPARγ and Cebpa. White adipose tissues from S6K1-deficient mice consistently exhibit marked reduction in H2BS36 phosphorylation (H2BS36p) and H3K27 trimethylation (H3K27me3), leading to enhanced expression of Wnt genes. In addition, expression levels of H2BS36p and H3K27me3 are highly elevated in white adipose tissues from mice fed on high-fat diet or from obese humans. These findings describe a novel role of S6K1 as a transcriptional regulator controlling an epigenetic network initiated by phosphorylation of H2B and trimethylation of H3, thus shutting off Wnt gene expression in early adipogenesis.

Increase in the Chlorophyll Contents by Over-expression of GmNAP1 Gene in Arabidopsis Plant (애기장대에서 GmNAP1의 과발현으로 인한 엽록소 함량 증가)

  • Park, Phun-Bum;Ahn, Chul-Hyun
    • Journal of Life Science
    • /
    • v.20 no.10
    • /
    • pp.1563-1568
    • /
    • 2010
  • In the course of a research concerning the molecular mechanism of hypocotyl elongation that occurs during soybean seedling growth in darkness, we have generated a number of ESTs from a cDNA library prepared from the hypocotyls of dark-grown soybean seedlings. Comparison of the ESTs assigned a cDNA clone as a putative plastidic ATP-binding-cassette (ABC) protein homologue. The soybean GmNAP1 protein contains an N-terminal transit peptide which targets it into the chloroplast. The transcription level of the GmNAP1 gene was investigated under continuous red light, continuous far-red light, and complete darkness. The main function of this NAP1 protein is the transport of protoporphyrin IX which is the precursor of chlorophyll from the cytoplasm to the chloroplast. The GmNAP1 gene was transferred into the Arabidopsis under the CaMV 35S promoter. The chlorophyll level of this transgenic Arabidopsis plant was much higher than the chlorophyll level of the wild type Arabidopsis plant.

Association of Poor Prognosis Subtypes of Breast Cancer with Estrogen Receptor Alpha Methylation in Iranian Women

  • Izadi, Pantea;Noruzinia, Mehrdad;Fereidooni, Foruzandeh;Nateghi, Mohammad Reza
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.8
    • /
    • pp.4113-4117
    • /
    • 2012
  • Breast cancer is a prevalent heterogeneous malignant disease. Gene expression profiling by DNA microarray can classify breast tumors into five different molecular subtypes: luminal A, luminal B, HER-2, basal and normal-like which have differing prognosis. Recently it has been shown that immunohistochemistry (IHC) markers including estrogen receptor (ER), progesterone receptor (PR) and human epidermal growth factor receptor 2 (Her2), can divide tumors to main subtypes: luminal A (ER+; PR+/-; HER-2-), luminal B (ER+;PR+/-; HER-2+), basal-like (ER-;PR-;HER2-) and Her2+ (ER-; PR-; HER-2+). Some subtypes such as basal-like subtype have been characterized by poor prognosis and reduced overall survival. Due to the importance of the ER signaling pathway in mammary cell proliferation; it appears that epigenetic changes in the $ER{\alpha}$ gene as a central component of this pathway, may contribute to prognostic prediction. Thus this study aimed to clarify the correlation of different IHC-based subtypes of breast tumors with $ER{\alpha}$ methylation in Iranian breast cancer patients. For this purpose one hundred fresh breast tumors obtained by surgical resection underwent DNA extraction for assessment of their ER methylation status by methylation specific PCR (MSP). These tumors were classified into main subtypes according to IHC markers and data were collected on pathological features of the patients. $ER{\alpha}$ methylation was found in 25 of 28 (89.3%) basal tumors, 21 of 24 (87.5%) Her2+ tumors, 18 of 34 (52.9%) luminal A tumors and 7 of 14 (50%) luminal B tumors. A strong correlation was found between $ER{\alpha}$ methylation and poor prognosis tumor subtypes (basal and Her2+) in patients (P<0.001). Our findings show that $ER{\alpha}$ methylation is correlated with poor prognosis subtypes of breast tumors in Iranian patients and may play an important role in pathogenesis of the more aggressive breast tumors.

Enhanced drought and salinity tolerance in transgenic potato plants with a BADH gene from spinach

  • Zhang, Ning;Si, Huai-Jun;Wen, Gang;Du, Hong-Hui;Liu, Bai-Lin;Wang, Di
    • Plant Biotechnology Reports
    • /
    • v.5 no.1
    • /
    • pp.71-77
    • /
    • 2011
  • Drought and salinity are the most important abiotic stresses that affect the normal growth and development of plants. Glycine betaine is one of the most important osmolytes present in higher plants that enable them to cope with environmental stresses through osmotic adjustment. In this study, a betaine aldehyde dehydrogenase (BADH) gene from spinach under the control of the stress-induced promoter rd29A from Arabidopsis thaliana was introduced into potato cultivar Gannongshu 2 by the Agrobacterium tumefaciens system. Putative transgenic plants were confirmed by Southern blot analysis. Northern hybridization analysis demonstrated that expression of BADH gene was induced by drought and NaCl stress in the transgenic potato plants. The BADH activity in the transgenic potato plants was between 10.8 and 11.7 U. There was a negative relationship (y = -2.2083x + 43.329, r = 0.9495) between BADH activity and the relative electrical conductivity of the transgenic potato plant leaves. Plant height increased by 0.4-0.9 cm and fresh weight per plant increased by 17-29% for the transgenic potato plants under NaCl and polyethylene glycol stresses compared with the control potato plants. These results indicated that the ability of transgenic plants to tolerate drought and salt was increased when their BADH activity was increased.

Proteomic analysis of dehydroascorbate reductase transgenic potato plants (Dehydroascorbate reductase 과발현 형질전환 감자 식물체의 단백질체 분석)

  • Han, Eun-Heui;Goo, Young-Min;Kim, Yun-Hee;Lee, Shin-Woo
    • Journal of Plant Biotechnology
    • /
    • v.43 no.2
    • /
    • pp.223-230
    • /
    • 2016
  • Ascorbic acid (AsA) is a strong antioxidant/reducing agent that can be converted to dehydroascorbate (DHA) by oxidation in plants. DHA, a very short-lived chemical, is recycled to AsA by dehydroascorbate reductase (DHAR). Previously, DHAR cDNA was isolated from the hairy roots of the sesame plant, and DHAR-overexpressing transgenic potato plants were generated under the control of the CaMV35S promoter (CaMV35S::DHAR). An increase in transgene expression and ascorbate levels were observed in the transgenic plants. In the present study, proteomic analysis revealed that transgenic plants not only accumulated DHAR in their cells, but also induced several other antioxidant enzyme-related proteins during plant growth. These results suggest that DHAR is important for stress tolerance via induction of antioxidant proteins, and could improve stress tolerance in transgenic potato plants.

A Startegy to Improve Customer Satisfaction in Mutuality Bank: Focus on Suhyup (상호금융 고객만족 제고를 위한 전략방향:수협을 중심으로)

  • Cho, Yong-Jun;Park, Chun-Gun
    • The Korean Journal of Applied Statistics
    • /
    • v.23 no.5
    • /
    • pp.799-812
    • /
    • 2010
  • The public banking market (the main eld of the second banking sector) faces increased competition du to the expansion of the rst banking sector. In this situation, Customer Satisfaction Management(CSM is emerging as a core business factor to create continuous growth without competitive exclusion because it is possible to churn management and draw an advocate customer. In this pa- per, with Suhyup mutuality bank as a sample for research, I have looked for necessary Customer Satisfaction(CS) factors and deduced a Customer Satisfaction Index(CSI), Customer Loyalty and Net Promoter Score(NPS) of detail factors in CS through a survey. Based on these result, the strategic factors required to improve CS were found and strategic directions for CS were proposed through a CS portfolio analysis.

Discovery of Gene Sources for Economic Traits in Hanwoo by Whole-genome Resequencing

  • Shin, Younhee;Jung, Ho-jin;Jung, Myunghee;Yoo, Seungil;Subramaniyam, Sathiyamoorthy;Markkandan, Kesavan;Kang, Jun-Mo;Rai, Rajani;Park, Junhyung;Kim, Jong-Joo
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.9
    • /
    • pp.1353-1362
    • /
    • 2016
  • Hanwoo, a Korean native cattle (Bos taurus coreana), has great economic value due to high meat quality. Also, the breed has genetic variations that are associated with production traits such as health, disease resistance, reproduction, growth as well as carcass quality. In this study, next generation sequencing technologies and the availability of an appropriate reference genome were applied to discover a large amount of single nucleotide polymorphisms (SNPs) in ten Hanwoo bulls. Analysis of whole-genome resequencing generated a total of 26.5 Gb data, of which 594,716,859 and 592,990,750 reads covered 98.73% and 93.79% of the bovine reference genomes of UMD 3.1 and Btau 4.6.1, respectively. In total, 2,473,884 and 2,402,997 putative SNPs were discovered, of which 1,095,922 (44.3%) and 982,674 (40.9%) novel SNPs were discovered against UMD3.1 and Btau 4.6.1, respectively. Among the SNPs, the 46,301 (UMD 3.1) and 28,613 SNPs (Btau 4.6.1) that were identified as Hanwoo-specific SNPs were included in the functional genes that may be involved in the mechanisms of milk production, tenderness, juiciness, marbling of Hanwoo beef and yellow hair. Most of the Hanwoo-specific SNPs were identified in the promoter region, suggesting that the SNPs influence differential expression of the regulated genes relative to the relevant traits. In particular, the non-synonymous (ns) SNPs found in CORIN, which is a negative regulator of Agouti, might be a causal variant to determine yellow hair of Hanwoo. Our results will provide abundant genetic sources of variation to characterize Hanwoo genetics and for subsequent breeding.

MiR-421 Regulates Apoptosis of BGC-823 Gastric Cancer Cells by Targeting Caspase-3

  • Wu, Jian-Hong;Yao, Yong-Liang;Gu, Tao;Wang, Ze-You;Pu, Xiong-Yong;Sun, Wang-Wei;Zhang, Xian;Jiang, Yi-Biao;Wang, Jian-Jun
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.13
    • /
    • pp.5463-5468
    • /
    • 2014
  • MicroRNAs might act as oncogenes or tumor suppressors in cancer. Recent studies have shown that miR-421 is up-regulated in human gastric cancer. Here, we found that miR-421 was over-expressed in gastric cancer tissues and cell lines. Bioinformatics analysis predicted that the caspase-3 gene was a target of miR-421. Caspase-3 was negatively regulated by miR-421 at the post-transcriptional level. Bax and Bcl-2 were also regulated by miR-421. Moreover, tumor necrosis factor receptor-I and -II, death receptors in the apoptosis pathway, were up-regulated by miR-421. The over-expression of miR-421 promoted gastric cancer cell growth and inhibited apoptosis of the BGC-823 gastric cancer cell line. These observations indicate that miR-421 acts as a tumor promoter by targeting the caspase-3 gene and preventing apoptosis of gastric cancer cells through inhibition of caspase-3 expression. These findings contribute to our understanding of the functions of miR-421 in gastric cancer.

Production of Bovine Nuclear Transfer Embryos Using Fibroblasts Transfected with Single-Chain Human Follicle-Stimulating Hormone Gene

  • Yoon, Ji Young;Kwon, Mo Sun;Kang, Jee Hyun;Ahn, Kwang Sung;Kim, So Seob;Kim, Nam-Hyung;Kim, Jin-Hoi;Kim, Teoan;Shim, Hosup
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.2
    • /
    • pp.168-173
    • /
    • 2009
  • Human follicle-stimulating hormone (hFSH) is a pituitary glycoprotein that regulates follicular development and ovulation. Clinically, hFSH has been used to induce follicular growth in infertile women. The hormone is composed of heterodimers, including a common ${\alpha}$ subunit among the gonadotropin family and a hormone-specific ${\beta}$ subunit. Since assembly of the heterodimer is a rate-limiting step in the production of functional hFSH, transgenic clone cows carrying a single-chain hFSH transgene may efficiently produce functional hormone. Genes encoding the ${\alpha}$ and ${\beta}$ subunits of hFSH were linked using the C-terminal peptide sequence from the ${\beta}$ subunit of human chorionic gonadotropin. Bovine fetal fibroblasts were transfected with the gene construct, including the goat ${\beta}$-casein promoter and a single-chain hFSH coding sequence. Transfected fibroblasts were transferred into enucleated oocytes, and individual nuclear transfer (NT) embryos developed to the blastocyst stage were analyzed for the transgene by polymerase chain reaction. Seventy eight blastocysts (30.8%) were developed from 259 reconstructed embryos. Among these blastocysts, the hFSH gene was detected in 70.8% (34/48) of the embryos. Subsequent transfer of hFSH-transgenic clone embryos to 31 recipients results in 11 (35.5%) early pregnancies. However, all fetuses were lost before reaching day 180 of gestation. The results from this study demonstrated that bovine NT embryos carrying single-chain hFSH could be produced, and further extensive studies in which NT embryos are transferred to more recipients may give rise to single chain hFSH-transgenic cows for biomedical applications.

Comparison of Two Feather-Degrading Bacillus Licheniformis Strains

  • Lin, Xiang;Lee, Soo-Won;Bae, Hee Dong;Shelford, Jim A.;Cheng, Kuo-Joan
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.14 no.12
    • /
    • pp.1769-1774
    • /
    • 2001
  • Bacillus licheniformis strains L-25 and PWD-1 are two thermophilic feather-degrading bacteria. Despite isolated from different environmental conditions, they were both capable of breaking down chicken feathers and growing in a medium in which feather was the only source of carbon and nitrogen. A 1.46-kb keratinase gene (ker B) was isolated from strain L-25 by a polymerase chain reaction (PCR) using L-25 genomic DNA as templates. Sequencing results reveal that ker B shares great sequence identity with a previously published keratinase gene of B. licheniformis PWD-1 (ker A). Only two amino acids differences were found in the deduced amino acid sequence between the keratinases from L-25 and PWD-1. However several nucleotide changes were found upstream of the putative promoter region. Protease inhibition studies indicated that neutral protease activity accounted for approximate 25 to 30% of total extracellular proteolytic activity produced by strain L-25 in the feather medium. In contrast, no measurable neutral protease activity was produced by strain PWD-1 in the feather medium. When glucose (1%), a common catabolic repressor, was added into the feather medium, L-25 was still able to grow and produce keratinase. Strain PWD-1 produced no neutral protease activity and its growth was severely inhibited in the feather medium containing glucose. L-25 produced an enhanced level of keratinase in the feather medium in comparison with PWD-1.