• Title/Summary/Keyword: Growth Hormone Receptor

검색결과 119건 처리시간 0.035초

Growth signaling and longevity in mouse models

  • Kim, Seung-Soo;Lee, Cheol-Koo
    • BMB Reports
    • /
    • 제52권1호
    • /
    • pp.70-85
    • /
    • 2019
  • Reduction of insulin/insulin-like growth factor 1 (IGF1) signaling (IIS) extends the lifespan of various species. So far, several longevity mouse models have been developed containing mutations related to growth signaling deficiency by targeting growth hormone (GH), IGF1, IGF1 receptor, insulin receptor, and insulin receptor substrate. In addition, p70 ribosomal protein S6 kinase 1 (S6K1) knockout leads to lifespan extension. S6K1 encodes an important kinase in the regulation of cell growth. S6K1 is regulated by mechanistic target of rapamycin (mTOR) complex 1. The v-myc myelocytomatosis viral oncogene homolog (MYC)-deficient mice also exhibits a longevity phenotype. The gene expression profiles of these mice models have been measured to identify their longevity mechanisms. Here, we summarize our knowledge of long-lived mouse models related to growth and discuss phenotypic characteristics, including organ-specific gene expression patterns.

치주인대세포 배양에서 estrogen이 growth hormone receptor의 발현유도에 미치는 영향 (Effect of estrogen on growth hormone receptor expression of human periodontal ligament cell line)

  • 홍성규;전영미;김정기
    • 대한치과교정학회지
    • /
    • 제30권4호
    • /
    • pp.441-452
    • /
    • 2000
  • 본 실험은 사람의 치주인대세포에서 에스트로겐과 growth hormone(GH)이 상호 어떠한 작용을 하는지를 규명하는 것이 목적이다. 교정치료를 받고자 내원한 환자중에서 건강한 20대 여자환자들의 상하악 제1소구치를 발거하여 치근의 중간1/3부위에서 긁어모은 치주인대 조직을 배양하여 치주인대세포를 얻었다. 사람의 치주인대세포의 분열증식에 대한 $17{\beta}$-estradiol과 hGH의 효과를 평가하고, 치주인대세포에 $17{\beta}$-estradiol을 전처리한 후 치주인대세포의 분열증식에 미치는 hGH의 효과 변화를 평가하였으며, 치주인대세포에 $17{\beta}$-estradiol을 전처리 하였을 경우 치주인대세포에 서 hGH receptor치 발현 양상의 변화를 평가하여 다음과 같은 결론을 얻었다. 1. $17{\beta}$-estradiol이나 humangrowth hormone의 단독처리는 사람의 치주인대세포의 분열종식에 큰 영향을 주지 않는다. 2. $17{\beta}$-estradiol $10^{-12}M$로 전처리한 후 hGH를 투여한 경우 hGH의 농도에 관계없이 사람의 치주인대세포의 분열증식을 증가시킨다. 3. 사람의 치주인대세포에는 hGH receptor가 없으나, $17{\beta}$-estradiol $10^{-12}M$로 5시간 이상 처리하면 hGH receptor가 발현된다. 4. hGH이 사람의 치주인대세포의 분열증식에 미치는 효과는 hGH receptor의 발현과 관련이 있으며 $17{\beta}$-estradiol의 전처리가 치주인대세포에서의 hGH receptor의 발현에 기여함으로써 hGH이 치주인대세포에 작용할 수 있도륵 해준다.비, 상악의 대구치간 너비, 구개정 높이가 상관관계가 있었다.에서 치 아이동은 정상상태보다 촉진될 가능성이 있음을 시사한다.따라 평균마찰력은 유의하게 증가하였다. 6. 브라켓간 거리의 변화에 대한 마찰력의 차이는 교정선의 재질에 따라 차이가 나며, 스테인레스 스틸 교정선은 브라켓간 거리가 감소할 때 마찰력이 유의하게 변화하지 않았으나, NiTi 교정선의 경우는 유의하게 증가하였다. 7. 브라켓내의 교정선의 이동속도에 따라 마찰력은 유의하게 변화하지 않았다. 이상의 결과로 볼 때 교정 치료동안 적정 교정력을 유지하기 위해 자가결찰브라켓, 스테인레스 스틸 교정선과 탄성모듈결찰법을 사용하는 것이 유리하며, 치료시기에 따라서 요구하는 마찰력이 다르므로 상황에 따라 재료를 선택하는 것이 중요할 것으로 사료된다.$, B군에서 $4.3\%$ 감소하였다. 7. 수술로 인한 얼굴폭의 변화는 무시할만한 것으로 판단되나 수술후 얼굴의 길이가 짧아져 상대적으로 얼굴의 폭이 넓어보일 수 있으므로 수술시 이에 대한 충분한 고려 및 환자에 대한 설명이 있어야 한다.로는 4-6세군 ($27.5\%$), 6-8세군 ($19.6\%$), 2-4세군 ($13.7\%$)이 $60\%$이상을 차지하여 초등학교 취학 전에 구순의 반흔을 제거하려 함을 알 수 있었다. 8. 비변형 교정수술시기로는 0-2세군 ($7.1\%$), 2-4세군 ($14.3\%$), 4-6세군 ($21.4\%$), 6-8세군 ($14.3\%$)으로 초등학교 취학이전이 $57.1\%$로서 최근의 조기 치료경향을 반영하는 것으로 보인다. 9. 인두피판술은 평균 6세에 시행되었으며, 수술 시행 시기별의 차이를 보이지 않고 고른 분포를

  • PDF

성장호르몬수용체 유전자를 지닌 형질전환생쥐의 세대전달율 및 치사율 (Transmission and Death Rates in Transgenic Mice Containing Growth Hormone Receptor Gene)

  • Kim, H.J.;Jin, D.I.
    • 한국가축번식학회지
    • /
    • 제25권1호
    • /
    • pp.85-90
    • /
    • 2001
  • 본 연구는 growth hormone receptor(GHR) gene의 동물생리에 미치는 영향을 연구하기 위해 metallothionein promoter와 GHR gene을 이용하여 생쥐의 1-cell 수정란에 DNA 미세주입법에 의해 형질전환생쥐를 생산하였다. 세마리의 형질전환생쥐가 생산되었는데 DNA 분석결과 4~8 copy의 GHR 유전자를 지닌 것으로 확인되었다 이들 세 마리의 GHR 형질전환생쥐를 정상 형질전환생쥐와 교미시켜 F$_1$과 F$_2$ 새끼를 생산하였는데 이들의 전달율은 F$_1$에서 20~50%였고 F$_2$에서는 약 50%를 나타내어 모자익형태로 유전자가 정착되었음을 확인할 수 있었다. 3주령까지의 사망률은 Fl과 F2 새끼에서 약 10~30%를 나타내어 GHR유전자의 발현이형질전환생쥐의 초기 사망에 영향을 미치는 것으로 나타났다.

  • PDF

Endocrine problems in children with Prader-Willi syndrome: special review on associated genetic aspects and early growth hormone treatment

  • Jin, Dong-Kyu
    • Clinical and Experimental Pediatrics
    • /
    • 제55권7호
    • /
    • pp.224-231
    • /
    • 2012
  • Prader-Willi syndrome (PWS) is a complex multisystem genetic disorder characterized by hypothalamic-pituitary dysfunction. The main clinical features include neonatal hypotonia, distinctive facial features, overall developmental delay, and poor growth in infancy, followed by overeating with severe obesity, short stature, and hypogonadism later in development. This paper reviews recent updates regarding the genetic aspects of this disorder. Three mechanisms (paternal deletion, maternal disomy, and deficient imprinting) are recognized. Maternal disomy can arise because of 4 possible mechanisms: trisomy rescue (TR), gamete complementation (GC), monosomy rescue (MR), and postfertilization mitotic nondisjunction (Mit). Recently, TR/GC caused by nondisjunction at maternal meiosis 1 has been identified increasingly, as a result of advanced maternal childbearing age in Korea. We verified that the d3 allele increases the responsiveness of the growth hormone (GH) receptor to endogenous GH. This paper also provides an overview of endocrine dysfunctions in children with PWS, including GH deficiency, obesity, sexual development, hypothyroidism, and adrenal insufficiency, as well as the effects of GH treatment. GH treatment coupled with a strictly controlled diet during early childhood may help to reduce obesity, improve neurodevelopment, and increase muscle mass. A more active approach to correct these hormone deficiencies would benefit patients with PWS.

Inhibitory Effect of 4-Aryl 2-Substituted Aniline-thiazole Analogs on Growth of Human Prostate Cancer LNCap Cells

  • Baek, Seung-Hwa;Kim, Nak-Jeong;Kim, Seong-Hwan;Park, Kwang-Hwa;Jeong, Kyung-Chae;Park, Bae-Keun;Kang, Nam-Sook
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권1호
    • /
    • pp.111-114
    • /
    • 2012
  • Androgen receptor (AR) is ligand-inducible nuclear hormone receptor which has been focused on key molecular target in growth and progression of prostate cancer. We synthesized a series of 4-aryl 2-substituted aniline-thiazole analogs and evaluated their anti-cancer activity in AR-dependent human prostate cancer LNCap cells. Among them, the compound 6 inhibited the tumor growth in LNCap-inoculated xenograft model.

Modulation of Pituitary Somatostatin Receptor Subtype (sst1-5) mRNA Levels by Growth Hormone (GH)-Releasing Hormone in Purified Somatotropes

  • Park, Seung-Joon;Park, Hee-Soon;Lee, Mi-Na;Sohn, Sook-Jin;Kim, Eun-Hee;Jung, Jee-Chang;Frohman, Lawrence A.;Kineman, Rhonda D.
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제7권2호
    • /
    • pp.79-84
    • /
    • 2003
  • We have previously reported that expression of the somatostatin receptor subtypes, sst1-5, is differentially regulated by growth hormone (GH)-releasing hormone (GHRH) and forskolin (FSK), in vitro. GHRH binds to membrane receptors selectively located on pituitary somatotropes, activates adenylyl cyclase (AC) and increases sst1 and sst2 and decreases sst5 mRNA levels, without significantly altering the expression of sst3 and sst4. In contrast FSK directly activates AC in all pituitary cell types and increases sst1 and sst2 mRNA levels and decreases sst3, sst4 and sst5 expression. Two explanations could account for these differential effects: 1) GHRH inhibits sst3 and sst4 expression in somatotropes, but this inhibitory effect is masked by expression of these receptors in unresponsive pituitary cell types, and 2) FSK inhibits sst3 and sst4 expression levels in pituitary cell types other than somatotropes. To differentiate between these two possibilities, somatotropes were sequentially labeled with monkey anti-rat GH antiserum, biotinylated goat anti-human IgG, and streptavidin-PE and subsequently purified by fluorescent-activated cell sorting (FACS). The resultant cell population consisted of 95% somatotropes, as determined by GH immunohistochemistry using a primary GH antiserum different from that used for FACS sorting. Purified somatotropes were cultured for 3 days and treated for 4 h with vehicle, GHRH (10 nM) or FSK ($10{\mu}M$). Total RNA was isolated by column extraction and specific receptor mRNA levels were determined by semi-quantitative multiplex RT-PCR. Under basal conditions, the relative expression levels of the various somatostatin receptor subtypes were sst2>sst5>sst3=sst1> sst4. GHRH treatment increased sst1 and sst2 mRNA levels and decreased sst3, sst4 and sst5 mRNA levels in purified somatotropes, comparable to the effects of FSK on purified somatotropes and mixed pituitary cell cultures. Taken together, these results demonstrate that GHRH acutely modulates the expression of all somatostatin receptor subtypes within GH-producing cells and its actions are likely mediated by activation of AC.

Effect of Soy Isoflavones on the Expression of $TGF-{\beta}1$ and Its Receptors in Cultured Human Breast Cancer Cell Lines

  • Kim Young-Hwa;Jin Kyong-Suk;Lee Yong-Woo
    • 대한의생명과학회지
    • /
    • 제11권2호
    • /
    • pp.175-183
    • /
    • 2005
  • The two major isoflavones in soy, genistein and daidzein, are well known to prevent hormone-dependent cancers by their anti estrogenic activity. The exact molecular mechanisms for the protective action are, however, not provided yet. It has been reported that genistein and daidzein have a potential anticancer activity through their antiproliferative effect in many hormone-dependent cancer cell lines. Transforming growth $factor-\beta1(TGF-\beta1)$ has also been found to have cell growth inhibitory effect, especially in mammary epithelial cells. This knowledge led to a hypothetical mechanism that the soy isoflavones-induced growth inhibitory effect can be derived from the regulation of $TGF-\beta1$ and $TGF-\beta$ receptors. In order to test this hypothesis, the effects of the soy isoflavones at various concentrations and periods on the expression of $TGF-\beta1$and $TGF-\beta$ receptors were investigated by using Northern blot analysis in human breast carcinoma epithelial cell lines, an estrogen receptor positive cell line (MCF-7) and an estrogen receptor negative cell line (MDA-MB-231). As a result, only genistein has shown a profound dose-dependent effect on $TGF-\beta1$ expression in the $ER^+$ cell line within the range of doses tested, and the expression levels are correspondent to their inhibitory activities of cell growth. Moreover, daidzein showed down-regulated $TGF-\beta1$ expression at a low dose, the cell growth proliferation was promoted at the same condition. Therefore, antiproliferative activity of the soy isoflavones can be mediated by $TGF-\beta1$ expression, and the effects are mainly, if not all, occurred by ER dependent pathway. The expression of $TGF-\beta$ receptors was induced at a lower dose than the one for $TGF-{\beta}1$ induction regardless of the presence of ER, and the expression patterns are similar to those of the cell growth inhibition. These results indicated that the regulation of $TGF-\beta$ receptor expression as well, prior to $TGF-\beta1$ expression, may be involved in the antiproliferative activity of soy isoflavones. Little or no expression of $TGF-\beta$ receptors was found in the MCF-7 and MDA-MB-231 cells, suggesting refractory properties of the cells to growth inhibitory effect of the $TGF-\beta$. The soy isoflavones can seemingly restore the sensitivity of growth inhibitory responses to $TGF-\beta1$ by re-inducing $TGF-\beta$ receptors expression. In conclusions, our findings presented in this study show that the antitumorigenic activity of the soy isoflavones could be mediated by not only $TGF-\beta1$induction but $TGF-\beta$ receptor restoration. Thus, soy isoflavones could be good model molecules to develop new nonsteroidal antiestrogenic chemopreventive agents, associated with, regulation of $TGF-\beta$ and its receptors.

  • PDF

Induction of Heme Oxygenase-1 By 15-Deoxy-Delta12,14-Prostaglandin J2 Is Mediated Through Activation of Transcription Factor Nrf2 in Mcf-7 Cells

  • Kim, Eun-Hee;Surh, Young-Joon
    • 한국독성학회:학술대회논문집
    • /
    • 한국독성학회 2003년도 추계학술대회
    • /
    • pp.180-180
    • /
    • 2003
  • Peroxisome proliferator-activated receptor gamma (PPAR-gamma), a member of the nuclear hormone receptor superfamily, is involved in the suppression of growth of several types of tumors such as liposarcoma, cancers of breast, prostate, and colon, possibly through induction of cell cycle arrest and/or apoptosis.(omitted)

  • PDF

The treatment effect of novel hGHRH homodimer to male infertility hamster

  • Zhang, Xu-Dong;Guo, Xiao-Yuan;Tang, Jing-Xuan;Yue, Lin-Na;Zhang, Juan-Hui;Liu, Tao;Dong, Yu-Xia;Tang, Song-Shan
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제22권6호
    • /
    • pp.637-647
    • /
    • 2018
  • Extra-hypothalamic growth hormone-releasing hormone (GHRH) plays an important role in reproduction. To study the treatment effect of Grin (a novel hGHRH homodimer), the infertility models of 85 male Chinese hamsters were established by intraperitoneally injecting 20 mg/kg of cyclophosphamide once in a week for 5 weeks and the treatment with Grin or human menopausal gonadotropin (hMG) as positive control was evaluated by performing a 3-week mating experiment. 2-8 mg/kg of Grin and 200 U/kg of hMG showed similar effect and different pathological characteristics. Compared to the single cyclophosphamide group (0%), the pregnancy rates (H-, M-, L-Grin 26.7, 30.8, 31.3%, and hMG 31.3%) showed significant difference, but there was no difference between the hMG and Grin groups. The single cyclophosphamide group presented loose tubules with pathologic vacuoles and significant TUNEL positive cells. Grin induced less weight of body or testis, compactly aligned tubules with little intra-lumens, whereas hMG caused more weight of body or testis, enlarging tubules with annular clearance. Grin presented a dose-dependent manner or cell differentiation-dependentincrease in testicular GHRH receptor, and did not impact the levels of blood and testicular GH, testosterone. Grin promotes fertility by proliferating and differentiating primitive cells through up-regulating testicular GHRH receptor without triggering GH secretion, which might solve the etiology of oligoasthenozoospermia.

The Influence of Bisphenol A on the Thyroid Hormone System in vivo

  • Cho, Mi-Young;Jung, Ki-Kyung;Nam, Kyung-Tak;Kang, Ju-Hye;Kang, Seog-Youn;Chung, Hye-Joo;Kim, Ju-Il;Lee, Young-Don;Na, Han-Kwang
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2003년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.1
    • /
    • pp.185.3-186
    • /
    • 2003
  • It is well-known that bisphenol A(BPA), an industrial raw material for polycarbonate and epoxy resins, shows estrogenic activity. Recent research from our laboratory has shown that SPA disrupts interaction between thyroid hormone and its receptor in a non-competitive manner, and alters the thyroid-hormone dependent expression of growth hormone(GH) and prolactin(PRL). (omitted)

  • PDF