In order to determine procedures for a, pp.opriate model selection of technological growth curves, numerous time series that were representative of growth behavior were collected according to data characteristics. Three different growth curve models were fitted onto data sets in an attempt to determine which growth curve models achieved the best forecasts for types of growth data. The analysis of the results gives rise to an a, pp.oach for selecting a, pp.opriate growth curve models for a given set of data, prior to fitting the models, based on the characteristics of the goodness of fit test.
KIPS Transactions on Software and Data Engineering
/
v.11
no.9
/
pp.355-362
/
2022
Smart Farm, which combines information and communication technologies with agriculture is moving from simple monitoring of the growth environment toward discovering the optimal environment for crop growth and in the form of self-regulating agriculture. To this end, it is important to collect related data, but it is more important for farmers with cultivation know-how to analyze the collected data from various perspectives and derive useful information for regulating the crop growth environment. In this study, we developed a web service that allows farmers who want to obtain necessary information with data related to crop growth to easily analyze data. Web-based data analysis serivice developed uses R language for data analysis and Express web application framework for Node.js. As a result of applying the developed data analysis service together with the growth environment monitoring system in operation, we could perform data analysis what we want just by uploading a CSV file or by entering raw data directly. We confirmed that a service provider could provid various data analysis services easily and could add a new data analysis service by newly adding R script.
Sook Lye Jeon;Jinheung Lee;Sung Eok Kim;Jeonghwan Park
Journal of Sensor Science and Technology
/
v.33
no.4
/
pp.230-236
/
2024
This study aimed to analyze the environmental factors affecting tomato growth by examining the correlation between weather and growth environment sensor data from P Smart Farm located in Gwangseok-myeon, Nonsan-si, Chungcheongnam-do. Key environmental variables such as the temperature, humidity, sunlight hours, solar radiation, and daily light integral (DLI) significantly affect tomato growth. The optimal temperature and DLI conditions play crucial roles in enhancing tomato growth and the photosynthetic efficiency. In this study, we developed a model to correct and predict the time-series variations in internal environmental sensor data using external weather sensor data. A linear regression analysis model was employed to estimate the external temperature variations and internal DLI values of P Smart Farm. Then, regression equations were derived based on these data. The analysis verified that the estimated variations in external temperature and internal DLI are explained effectively by the regression models. In this research, we analyzed and monitored smart-farm growth environment data based on weather sensor data. Thereby, we obtained an optimized model for the temperature and light conditions crucial for tomato growth. Additionally, the study emphasizes the importance of sensor-based data analysis in dynamically adjusting the tomato growth environment according to the variations in weather and growth conditions. The observations of this study indicate that analytical solutions using public weather data can provide data-driven operational experiences and productivity improvements for small- and medium-sized facility farms that cannot afford expensive sensors.
Emily Nur SAIDY;Muhammad AMRI;Sanusi FATTAH;Sri Undai NURBAYANI
Journal of Distribution Science
/
v.22
no.8
/
pp.17-27
/
2024
Economic growth is influenced by various factors, including support from the banking world in channeling funds ownedthrough bank credit which will be a stimulus from economic activities as a source of economic growth. Purpose: Thisstudy aims to analyze the determinants of bank lending in supporting regional economic growth in South Sulawesi Province. Research Design, Data, and Methodology: This study uses secondary data taken from banking data and analyzed using path analysis Data analysis is carried out using the help of SPSS statistical analysis tools. Results: Non-Performance Loan, Three Partied Fund, Inflation, Exchange Rate directly affect economic growth. For the analysis of the indirect effect of Non-performance loans and Three Partied Funds have an indirect effect on economic growth through lending while the Loan to deposit Ratio, Inflation and exchange rate do not indirectly affect economic growththrough lending. Credit disbursement has a positive and significant effect on economic growth Conclusion: Economicgrowth of a region is influenced by many factors and these factors are influences from the banking world, the results ofthis study show that economic growth is strongly influenced by bank support through lending to support the economy by considering other factors such as interest rates and currency exchange rates
International journal of advanced smart convergence
/
v.12
no.3
/
pp.104-108
/
2023
This paper deals with research on innovative systems using Python-based artificial intelligence technology in the field of plant growth monitoring. The importance of monitoring and analyzing the health status and growth environment of plants in real time contributes to improving the efficiency and quality of crop production. This paper proposes a method of processing and analyzing plant image data using computer vision and deep learning technologies. The system was implemented using Python language and the main deep learning framework, TensorFlow, PyTorch. A camera system that monitors plants in real time acquires image data and provides it as input to a deep neural network model. This model was used to determine the growth state of plants, the presence of pests, and nutritional status. The proposed system provides users with information on plant state changes in real time by providing monitoring results in the form of visual or notification. In addition, it is also used to predict future growth conditions or anomalies by building data analysis and prediction models based on the collected data. This paper is about the design and implementation of Python-based plant growth monitoring systems, data processing and analysis methods, and is expected to contribute to important research areas for improving plant production efficiency and reducing resource consumption.
In fatigue crack growth test, it is important not only to analyze characteristics of fatigue crack growth but also to determine the threshold stress intensity factor, ${\Delta}K_{th}$. which is the threshold value of fatigue crack growth. Linear regression analysis using fatigue test data near the threshold is suggested to determine the ${\Delta}K_{th}$ in the standard test method but the ${\Delta}K_{th}$ can be affected by a fitting method. And there are some limitations on the linear regression analysis in the case of small number of test data near the threshold. The objective of this study is to investigate differences of the ${\Delta}K_{th}$ due to regression analysis method and to evaluate the relative error range of the ${\Delta}K_{th}$ in same fatigue crack growth test data.
The Journal of Economics, Marketing and Management
/
v.10
no.2
/
pp.15-22
/
2022
Purpose: This study explores the effect of employee's growth needs strength on counterproductive work behaviors. Perceived job insecurity was also examined as a moderating variable on the relationship between the two variables. Research Design, data and methodology: This study collected 108 data samples from working individuals from South Korea. The Exploratory Factor Analysis (EFA) and the hierarchical regression analysis were used to analyze the data. Hierarchical regression analysis was performed using SPSS 24.0. Results: Our research results indicated that employee's growth needs strength has a negative effect on counterproductive work behaviors. Perceived job insecurity moderates the relationship between the two variables. Conclusions: Organizations should focus on creating growth opportunities for employees, since facilitating employee's growth need strength will counteract the desire to engage in behaviors that can be detrimental to the organization. and its members.
Yulia, Yulia;Budhi, Gregorius Satia;Hendratha, Stefani Natalia
Journal of information and communication convergence engineering
/
v.16
no.1
/
pp.52-59
/
2018
Odoo is an enterprise resource planning information system providing modules to support the basic business function in companies. This research will look into the development of an additional module at Odoo. This module is a data mining module using Market Basket Analysis (MBA) using FP-Growth algorithm in managing OLTP of sales transaction to be useful information for users to improve the analysis of company business strategy. The FP-Growth algorithm used in the application was able to produce multidimensional association rules. The company will know more about their sales and customers' buying habits. Performing sales trend analysis will give a valuable insight into the inner-workings of the business. The testing of the module is using the data from X Supermarket. The final result of this module is generated from a data mining process in the form of association rule. The rule is presented in narrative and graphical form to be understood easier.
Various growth models were each fitted onto the data sets in an attempt to determine which growth models achieved the best forecasts for differing types of growth data. Of six such models studied, some models do significantly better than others in predicting future levels of growth. It is recommened that Weibull and the Gompertz growth curve be considered along with Pearl model by those industries presently considering the implementation of substitution analysis in their life analysis. In the early stage of growth, linear estimation should suffice to give reasonable forecasts. In the latter stage, however, as more data become availavle, nonlinear estimation should be used.
Purpose: The government around the world is still highlighting the effect of the new variant of Covid-19. The government continues to make efforts to restore the economy through several programs, one of them is National Economic Recovery. This program is expected to increase public and investor confidence in handling Covid-19. This study aims to capture public sentiment on the economic growth rate in Indonesia, especially during the third wave of the omicron variant of the covid-19 virus, that is at the time in the fourth quarter of 2021. Research design, data, and methodology: The approach used in this research is to collect crowdsourcing data from twitter, in the range of 1st to 10th October 2021. The analysis is done by building model using Deep Learning Neural Network method. Results: The result of the sentiment analysis is that most of the tweets have a neutral sentiment on the Economic Growth discussion. Several central figures who discussed were Minister of Coordinating for the Economy of Indonesia, Minister of State-Owned Enterprises. Conclusions: Data from social media can be used by the government to capture public responses, especially public sentiment regarding economic growth. This can be used by policy makers, for example entrepreneurs to anticipate economic movements under certain conditions.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.