• Title/Summary/Keyword: Growth, Maturation

Search Result 456, Processing Time 0.023 seconds

Treatment of Epidermal Growth Factor (EGF) enhances Nuclear Maturation of Porcine Oocytes and Stimulates Expression of ER/Golgi Transport Proteins

  • Hwangbo, Yong;Oh, Hae-In;Lee, Sang-Hee;Cheong, Hee-Tae;Yang, Boo-Keun;Park, Choon-Keun
    • Development and Reproduction
    • /
    • v.21 no.2
    • /
    • pp.131-138
    • /
    • 2017
  • This study was conducted to investigate stimulatory effect of epidermal growth factor (EGF) on nuclear maturation and the expression level of EGF-receptor (EGFR), GM-130 (a marker of Golgi apparatus), transport protein Sec61 subunit beta ($Sec61{\beta}$), and coatomer protein complex subunit gamma 2 (COPG2) in porcine oocytes. The cumulus-oocyte complexes were collected from follicle with 3-6 mm in diameter. They were incubated in medium with/without EGF for 22 h (IVM I) and subsequently incubated hormone-free medium with/without EGF for 22 h (IVM II). Nuclear maturation state was checked by aceto-orcein stain. Protein expression of EGFR, GM-130, $Sec61{\beta}$, and COPG2 were measured by immunofluorescence. In results, nuclear maturation of oocytes in EGF non-treated oocytes were significantly lower than EGF-treated groups at IVM I or IVM II stage (P<0.05), whereas maturational rate in EGF treatment groups at both of IVM stage was higher in among the all treatment groups (P<0.05). EGFR, GM-130, $Sec61{\beta}$ and COPG2 were expressed in the cytoplasm of oocytes. Especially, GM-130 and EGFR were strongly expressed, but $Sec61{\beta}$ and COPG2 were weakly expressed in cortical area of cytoplasm. The protein level of GM-130, $Sec61{\beta}$, and COPG2 were significantly higher in the EGF-treated groups (P<0.05). However EGFR was no difference between non EGF-treated groups and control. In conclusion, EGF plays an important role in the systems for oocyte maturation with endoplasmic reticulum and Golgi apparatus. In addition, the protein levels of $Sec61{\beta}$ and COPG2 could be changed by EGF in the porcine oocytes during maturation.

Lysophosphatidylcholine Enhances Bactericidal Activity by Promoting Phagosome Maturation via the Activation of the NF-κB Pathway during Salmonella Infection in Mouse Macrophages

  • Lee, Hyo-Ji;Hong, Wan-Gi;Woo, Yunseo;Ahn, Jae-Hee;Ko, Hyun-Jeong;Kim, Hyeran;Moon, Sungjin;Hahn, Tae-Wook;Jung, Young Mee;Song, Dong-Keun;Jung, Yu-Jin
    • Molecules and Cells
    • /
    • v.43 no.12
    • /
    • pp.989-1001
    • /
    • 2020
  • Salmonella enterica serovar Typhimurium (S. Typhimurium) is a facultative intracellular pathogen that causes salmonellosis and mortality worldwide. S. Typhimurium infects macrophages and survives within phagosomes by avoiding the phagosome-lysosome fusion system. Phagosomes sequentially acquire different Rab GTPases during maturation and eventually fuse with acidic lysosomes. Lysophosphatidylcholine (LPC) is a bioactive lipid that is associated with the generation of chemoattractants and reactive oxygen species (ROS). In our previous study, LPC controlled the intracellular growth of Mycobacterium tuberculosis by promoting phagosome maturation. In this study, to verify whether LPC enhances phagosome maturation and regulates the intracellular growth of S. Typhimurium, macrophages were infected with S. Typhimurium. LPC decreased the intracellular bacterial burden, but it did not induce cytotoxicity in S. Typhimurium-infected cells. In addition, combined administration of LPC and antibiotic significantly reduced the bacterial burden in the spleen and the liver. The ratios of the colocalization of intracellular S. Typhimurium with phagosome maturation markers, such as early endosome antigen 1 (EEA1) and lysosome-associated membrane protein 1 (LAMP-1), were significantly increased in LPC-treated cells. The expression level of cleaved cathepsin D was rapidly increased in LPC-treated cells during S. Typhimurium infection. Treatment with LPC enhanced ROS production, but it did not affect nitric oxide production in S. Typhimurium-infected cells. LPC also rapidly triggered the phosphorylation of IκBα during S. Typhimurium infection. These results suggest that LPC can improve phagosome maturation via ROS-induced activation of NF-κB pathway and thus may be developed as a therapeutic agent to control S. Typhimurium growth.

Role of Growth Differentiation Factor 9 and Bone Morphogenetic Protein 15 in Ovarian Function and Their Importance in Mammalian Female Fertility - A Review

  • Castro, Fernanda Cavallari de;Cruz, Maria Helena Coelho;Leal, Claudia Lima Verde
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.8
    • /
    • pp.1065-1074
    • /
    • 2016
  • Growth factors play an important role during early ovarian development and folliculogenesis, since they regulate the migration of germ cells to the gonadal ridge. They also act on follicle recruitment, proliferation/atresia of granulosa cells and theca, steroidogenesis, oocyte maturation, ovulation and luteinization. Among the growth factors, the growth differentiation factor 9 (GDF9) and the bone morphogenetic protein 15 (BMP15), belong to the transforming growth factor beta (TGF-${\beta}$) superfamily, have been implicated as essential for follicular development. The GDF9 and BMP15 participate in the evolution of the primordial follicle to primary follicle and play an important role in the later stages of follicular development and maturation, increasing the steroidogenic acute regulatory protein expression, plasminogen activator and luteinizing hormone receptor (LHR). These factors are also involved in the interconnections between the oocyte and surrounding cumulus cells, where they regulate absorption of amino acids, glycolysis and biosynthesis of cholesterol cumulus cells. Even though the mode of action has not been fully established, in vitro observations indicate that the factors GDF9 and BMP15 stimulate the growth of ovarian follicles and proliferation of cumulus cells through the induction of mitosis in cells and granulosa and theca expression of genes linked to follicular maturation. Thus, seeking greater understanding of the action of these growth factors on the development of oocytes, the role of GDF9 and BMP15 in ovarian function is summarized in this brief review.

Biological aspects and population dynamics of Indian mackerel (Rastrelliger kanagurta) in Barru, Makassar Strait, Indonesia

  • Andi Asni;Hasrun;Ihsan;Najamuddin
    • Fisheries and Aquatic Sciences
    • /
    • v.27 no.6
    • /
    • pp.392-409
    • /
    • 2024
  • The present study aims to analyze the biological aspects and population dynamics of Indian mackerel in Barru waters. Data was collected in Barru for 11 months, from June 2022 to April 2023. The observed parameters of biological aspects included gonadal maturation stages (GMSs), size at first gonadal maturation, and length-weight relationship. Meanwhile, the aspects of population dynamics encompass age group, growth, mortality rate, and exploitation rate. Data analysis consisted of morphological selection of general maturation stages, Spearman-Kärber method in estimating gonadal first maturation size, Bhattacharya method in identifying age group, von Bertalanffy function through FISAT II to measure growth (L and K), Pauly Model to estimate mortality rate, Beverton & Holt Model to estimate Y/R, and virtual population analysis (VPA) analysis to estimate stock and fish yield. The results demonstrated that GMS I was observed to be dominant, followed by stages II and III. The initial gonadal maturation was estimated to be 17.98-19.28 cm (FL) for females and 17.98-19.27 cm (FL) for males. The length-weight relationship in male and female Indian mackerels indicated a positive allometric growth. The mode grouping analysis results from the fork length measurement revealed three age groups. It was also identified that the asymptotic length (L) = 29.5 cm (fork length), growth rate coefficient (K) = 0.46 per year, and theoretical age at zero length (t0) = -0.3576 per year. Total mortality (Z) = 2.67 per year, natural mortality (M) = 1.10 per year, fishing mortality (F) = 1.57 per year, and exploitation rate (E) = 0.59, the actual Y/R = 0.083 gram/recruitment, and optimal Y/R 0.03 gram/recruitment. Fishing mortality is higher than the natural mortality rate, and a high exploitation value (E > 0.5) also reflects over-exploitation. VPA analysis on fish yields and stock estimation reported a highly exploited rate between the 11.5 cm and 14.5 cm length classes and an exceeding current yield of 467.07 tons/year with a recommended yield of 233.53 tons/year to ensure population sustainability.

Interaction between Transforming Growth Factor $\beta$ and Cumulus Cells during In Vitro Maturation in Porcine Oocytes (돼지난자의 체외성숙시 Transforming Growth Factor$\beta$와 난구세포의 상호작용)

  • 신명균;조재원;정희태;양부근;김정익;박춘근
    • Korean Journal of Animal Reproduction
    • /
    • v.22 no.1
    • /
    • pp.73-80
    • /
    • 1998
  • This study was undertaken to evaluate the interaction between cumulus cells and TGF $\beta$1 on in vitro maturation in porcine oocytes. No differ ences were found in maturation rates when follicular oocytes were cultured in medium with various concentrations of TGF $\beta$. At 24 h after maturation, the oocytes matured to metaphase-II were found in medium with TGF $\beta$ regardless of cumulus cells. On the other hand, the maturation rates were significantly(P < 0.01 higher cumulus-enclosed(70 and 52%) than cumulus-denuded oocytes(35 and 26%) in medium with or without TGF $\beta$ at 48 h after culture. In a another experiment, the same maturation rates (54-71%) were observed when cumulus-enclosed oocytes were cultured with various addition time of TGF $\beta$. However, the maturation rates in cumulus-denuded oocytes were significantly (P < 0.05) higher in medium added at 0~24 h (59%) or 24-48 h(57%) after culture than in medium with(27%) and without(38%) TGF $\beta$ for 48 h. These results indicated that cumulus cells is essential for in vitro maturation in porcine oocytes but TGF $\beta$ can promote oocytes maturation in cumulus-free oocytes.

  • PDF

Effect of Epidermal Growth Factor on In Vitro Maturation in Pig Immature Oocytes;II. Effect of Epidermal Growth Factor on GVBD (Epidermal Growth Factor가 돼지 미성숙난포란의 체외성숙에 미치는 영향;II. GVBD에 미치는 Epidermal Growth Factor의 효과)

  • Uhm, S.J.;Kim, S.E.;Kim, E.Y.;Yoon, S.H.;Park, S.P.;Chung, K.S.;Lim, J.H.
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.23 no.1
    • /
    • pp.33-39
    • /
    • 1996
  • This objective of this experiment was to test the effect of EGF on GVBD and MII of nuclear maturation of pig immature oocytes in vitro. Experiment 1 examined to the effect of EGF on nuclear maturation of pig immature oocytes according to different maturational times. The percentage of GVBD of EGF 10mg/ml treated groups were significantly higher than untreated groups after 24hr (p < 0.001). Experiment 2 examined to the effect of duration of exposure of oocytes to EGF supplement in maturation medium. Nuclear maturation rates (M II) of EGF treated groups (during 0-24: 72.8% and 0-42hr: 84.8%) were significantly higher than 53.5 and 26.1% of EGF treated group (during 24-42hr) and untreated group (p < 0.001). Also, experiment 3 examined to the effect of EGF on nuclear maturation of CEOs or CFOs. Nuclear maturation rate (M II) 84.6% of EGF treated group of CEOs was significantly higher than 53.0, 27.6, and 44.2% of EGF treated group of CFOs and untreated groups of CEOs and CFOs (p < O.001). These results conclude that EGF alone can stimulate GVBD and M II of nuclear maturation in pig immature oocytes.

  • PDF

Evaluation of cephalometric characteristics and skeletal maturation of the cervical vertebrae and hand-wrist in girls with central precocious puberty

  • Kang, Sung-Tae;Choi, Sung-Hwan;Kim, Kyung-Ho;Hwang, Chung-Ju
    • The korean journal of orthodontics
    • /
    • v.50 no.3
    • /
    • pp.181-187
    • /
    • 2020
  • Objective: This study aimed to evaluate the differences in cephalometric characteristics and skeletal maturation in girls with central precocious puberty (CPP) via lateral and hand-wrist radiographs. We also aimed to identify the indicators that are most effective for determining skeletal maturity in these patients. Methods: The study included 70 Korean girls (mean age, 8.5 ± 0.5 years) diagnosed with CPP at the Department of Pediatrics, and 48 normal healthy age-matched girls who visited the Department of Orthodontics and had no history of hormone treatment or growth problems. Skeletal maturation was evaluated using lateral cephalometric and hand-wrist radiographs using cervical vertebrae maturation indicators (CVMI) and skeletal maturity indicators (SMI). Results: The mean mandibular plane angle was smaller in the CPP group than in the control group (35.8° ± 4.9° vs. 39.0° ± 6.5°), resulting in greater posterior facial height (p = 0.003). SMI was significantly greater in the CPP group (3.5 ± 1.4 vs. 2.0 ± 1.0) than in the control group (p = 0.001) and was significantly associated with CPP (r = 0.492; p = 0.001), whereas CVMI was not. Conclusions: In comparison with the control group, the CPP group exhibited a smaller mandibular plane angle, greater posterior facial height, and greater skeletal maturation. SMI may be more suitable than CVMI for determining skeletal maturation in CPP. Hand-wrist radiography is recommended in addition to lateral cephalogram for predicting growth in girls with CPP.

In Vitro Culture of the Isolated Mouse Preantral Follicles: Effect of Different Types of FSH and Vitrification (생쥐 Preantral 난포의 체외배양: FSH의 종류와 농도 및 초자화 냉동보존의 영향)

  • Lee, Sook-Hyun;Shin, Chang-Sook;Chung, Hyung-Min;Ko, Jung-Jae;Cha, Kwang-Yul;Lee, Kyung-Ah
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.27 no.4
    • /
    • pp.387-392
    • /
    • 2000
  • Objectives: 1) To compare the efficacy of urofollitropin (Follimon) to that of recombinant human FSH (rhFSH) on the growth and maturation of mouse early preantral follicles in vitro, and 2) effect of vitrification on the growth and maturation of preantral follicles and oocytes . Methods: Isolated early preantra1 follicles (100-130 ${\mu}m$ diameter) were cultured for 12 days in 20 ${\mu}l$ ${\alpha}$-MEM media drop under the mineral oil. Follimon or rhFSH was added to the culture medium at various concentrations (0, 10, 100, and 1000 mIU/ml). Results: With Follimon, the dose of 10 mIU/ml showed the best follicle survival, growth, and MIl rate of oocyte than the other concentrations. Whereas the optimal dose of rhFSH was 100 mIU/ml. Despite the different optimal doses, the efficacy of two different FSHs on the follicle growth and maturation was similar. Isolated mouse preantral follicles were cryopreserved by vitrification and cultured in vitro for 12 days with 100 mIU/ml rhFSH. Despite the decreased follicular survival rate after thawing, the follicular growth and maturation rate of its oocyte were comparable to those of the fresh follicle. Conclusion: Results from the present study revealed that 1) the optimal doses of Follimon and rhFSH for in-vitro culture of mouse follicles are different, and 2) the frozen-thawed follicles develop normally after vitrification.

  • PDF

In Vitro Growth and Maturation of Mammalian Oocytes (포유동물 난자의 성장과 성숙)

  • Kato, S.;Miyano, T.;Hirao, H.;Miyake, M.
    • Korean Journal of Animal Reproduction
    • /
    • v.19 no.4
    • /
    • pp.323-329
    • /
    • 1996
  • In vitro cultrue systems for the growth of sma-II oocytes and for meiotic maturation are expected to provide a new source of a large population of oocytes as well as assistance in basic physiological studies of oogenesis. Mouse oocytes mid-growth phase can complete grovvth and acquire full developmental capacity in vitro. On the other hand, growing pig oocytes need some other factors. FSH at a low concentration maintains the viability of both oocytes and granulosa cells, and hypoxanthine promotes the meiotic competence of the oocytes during culture period. Considerable improvement in the culture systems for growth of pig oocytes, suggested from mouse studies, and for oocyte maturation could help to develop this technology in larger species.

  • PDF

Effect of Epidermal Growth Factor on In Vitro Maturation in Pig Immature Oocytes III. Effect of Epidermal Growth Factor on In Vitro Fertilization (Epidermal Growth Factor가 돼지 미성숙난포란의 체외성숙에 미치는 영향 III. 체외 수정에 미치는 Epidermal Grwoth Factor의 효과)

  • 엄상준;김은영;김묘경;추영국;윤산현;박세필;정길생;임진호
    • Korean Journal of Animal Reproduction
    • /
    • v.20 no.2
    • /
    • pp.127-134
    • /
    • 1996
  • The objective of this experiment was to test the ability of the fertilization of EGF treated pig oocytes for in vitro maturation. The addition of EGF (10 ng/ml), FSH (10 ${\mu}\textrm{g}$/ml), or FBS (10%) on maturation medium of pig immature oocytes divided into four groups as follows; group 1: untreatment, group 2: EGF alone, group 3: combination of FSH and FBS, or group 4: combination of EGF, FSH, and FBS. The interactive effects of nuclear maturation rates (M II%) of EGF alone, FSH plus FBS, and EGF plus FSH added FBS treatments were significantly higher than those of non-treatments (P<0.001). The fertilization rate of EGF alone (group 2) was lower than that of 3, 4 groups, but was significantly higher than group 1 (p< 0.005). Furthermore, combination of EGF, FSH,and FBS (group 4) was higher than others (group 1. 2, 3) on male pronuclei formation as well as penetration of sperm (P<0.05). These results suggested that EGF alone decreased the ability of cytoplasmic maturation compared to nuclear maturation in pig oocytes, but a high level of cytoplasmic maturation of in vitro-matured pig oocytes can be achieved when supplemented with FSH and FBS.

  • PDF