• 제목/요약/키워드: Grouting equipment

Search Result 27, Processing Time 0.027 seconds

Development and Reliability Verification of Quality Control System for Compaction Grouting Method (컴팩션 그라우팅 공법의 품질관리 시스템 개발 및 신뢰성 검증)

  • Seo, Seok-Hyun;Lee, Jung-Sang;Jung, Eui-Youp;Park, Sang-Yeong;Lee, Hyo-Bum
    • Journal of the Korean Geosynthetics Society
    • /
    • v.19 no.4
    • /
    • pp.11-20
    • /
    • 2020
  • This study introduced the compact grouting method that can be used for improving soft ground and restoring buildings with unequal subsidence. The pump used in the traditional compact grouting method is a system that injects one hole each, which reduces the construction efficiency, and the analog injection method manually manages the construction by field workers, making it difficult to manage consistent quality. Pump and quality control system were developed to solve problems in existing construction. Since field supervisor determines amount of injected materials by using analog equipment and controls manually, it is difficult to manage consistent quality of construction. Therefore, the quality control system was developed in order to solve that problem. The quality control system consists of automatic mixing system of injection materials, multiple simultaneous injection pumps, and injection management monitoring system. Performance of the quality control system was verified through on-site testing, and ground improvement performance was verified through quality testing after testing and testing of the compact grouting method. Therefore, it is expected that the integrated quality control system developed will improve the quality assurance and efficiency and stability of construction at sites where construction and quality verification are difficult.

A Study on Heat Transfer Performance of Vertical Ground Heat Exchanger of GSHP(Ground Source Heat Pump) (GSHP용 수직형 지중열교환기의 열전달 성능에 관한 연구)

  • Chung, Min-Ho;Chang, Ki-Chang;Ra, Ho-Sang;Baik, Young-Jin;Park, Seong-Ryong;Yoo, Seong-Yeon
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2102-2107
    • /
    • 2007
  • GSHP systems are used for air-conditioning systems in commercial buildings, schools, and factories because of low operating and maintenance costs. These systems use the earth as a heat source in heating and a heat sink in cooling mode. Ground heat exchangers are classified by a horizontal and vertical type according to the installation method. Vertical type is usually constructed by placing small diameter high density polyethylene tube in a vertical borehole. Vertical tube sizes range from 20 to 40 mm nominal diameter. Borehole depth range between 100 and 200 m depending on local drilling conditions and available equipment. In this study, to evaluate the performance of single u-tube with bentonite grouting, single u-tube with broken stone grouting and double u-tube bentonite grouting of vertical ground heat exchangers, test sections are buried on the earth and experimental apparatus is installed. Therefore the heat transfer performance and pressure loss of these are estimated.

  • PDF

A Study on Performance of Vertical Ground Heat Exchanger for Heat Pump (히트펌프용 수직형 지중열교환기의 성능에 관한 연구)

  • Chang, Ki-Chang;Chung, Min-Ho;Yoon, Hyung-Kee;Ra, Ho-Sang;Yoo, Seong-Yeon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.466-469
    • /
    • 2007
  • Heat pumps are used for air-conditioning systems in commercial buildings, schools, and factories because of low operating and maintenance costs. These systems use the earth as a heat source in heating mode and a heat sink in cooling mode. Ground heat exchangers are classified by a horizontal type and vertical type according to the installation method. A horizontal type means that a heat exchanger is laid in the trench bored in 1.2 to 1.8 m depth. And a vertical type is usually constructed by placing small diameter high density polyethylene tube in a vertical borehole. Vertical tube sizes range from 20 to 40 mm nominal diameter. Borehole depth range between 100 and 200 m depending on local drilling conditions and available equipment. In this study, to evaluate the performance of single u-tube with bentonite grouting, single u-tube with broken stone grouting and double n-tube bentonite grouting of vertical ground heat exchangers, test sections are buried on the earth and experimental apparatus is installed. Therefore the heat transfer performance and pressure loss of these are estimated.

  • PDF

Improvement of Soil Strength by Injection of Water-Glass Chemical Grout (물유리계 주입재(注入材)를 주로 한 지반강도증대(地盤強度增大))

  • Jin, Byung Ik;Chun, Byung Sik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.4 no.2
    • /
    • pp.89-99
    • /
    • 1984
  • Engineering properties of soils is studied by permeating injection of water-glass chemical grout by use of a large sized grouting equipment of 1.5 shot system. Furthermore, the effectiveness of chemical groutinig by taking water-glass chemical grout combined with portland-cement for the purpose of improving the soil strength is confirmed. Relationships between main factors which cause the effectiveness of chemical grouting are described, and the factors are velocity and temperature of flowing water; grain size distribution and density of soils; density, viscosity, gel time and volume of grouts; injection pressure and grouting process. Improvement of the effectiveness of chemical grouting in flowing water by preventing the dilution and flowing down of grouts is investigated. Moreover, local shear failures and upheaval phenomena of ground are also investigated by field measurement.

  • PDF

A Study on the Effectiveness of Injection in Environmentally-Friendly Bio-grouting with Soil Conditions (지반조건에 따른 친환경 바이오그라우팅 주입 효과에 관한 연구)

  • Kim, Daehyeon;Park, Kyung-Ho;Kim, Min-Seok;Kim, Sun-Hak
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.6
    • /
    • pp.4276-4283
    • /
    • 2015
  • The purpose of this research is to identify the effectiveness of injection with soil conditions by injecting CaCO3(created by microorganism reaction), which was recreated with equipment in similar situ condition. To analyze our research, we made 2 cases of single-layer (SP, SW) in D 150mm ${\times}$ H 300mm. Layers were made by RC 70, 80, 85, 90, 95% of soil condition. We measured uniaxial compression strength with cone penetrometer and watched injection range by checking a bulb formation around the injection nozzle. As a result, the relative compaction(RC) in more 85% were not injected in SW, we could identify the effect of bio-grouting technology on ground in relative compaction(RC) of injection ratio and cementation range.

Experimental investigation of the mechanical behaviors of grouted crushed coal rocks under uniaxial compression

  • Jin, Yuhao;Han, Lijun;Meng, Qingbin;Ma, Dan;Wen, Shengyong;Wang, Shuai
    • Geomechanics and Engineering
    • /
    • v.16 no.3
    • /
    • pp.273-284
    • /
    • 2018
  • A detailed understanding of the mechanical behaviors for crushed coal rocks after grouting is a key for construction in the broken zones of mining engineering. In this research, experiments of grouting into the crushed coal rock using independently developed test equipment for solving the problem of sampling of crushed coal rocks have been carried out. The application of uniaxial compression was used to approximately simulate the ground stress in real engineering. In combination with the analysis of crack evolution and failure modes for the grouted specimens, the influences of different crushed degrees of coal rock (CDCR) and solidified grout strength (SGS) on the mechanical behavior of grouted specimens under uniaxial compression were investigated. The research demonstrated that first, the UCS of grouted specimens decreased with the decrease in the CDCR at constant SGS (except for the SGS of 12.3 MPa). However, the UCS of grouted specimens for constant CDCR increased when the SGS increased; optimum solidification strengths for grouts between 19.3 and 23.0 MPa were obtained. The elastic moduli of the grouted specimens with different CDCR generally increased with increasing SGS, and the peak axial strain showed a slightly nonlinear decrease with increasing SGS. The supporting effect of the skeleton structure produced by the solidified grouts was increasingly obvious with increasing CDCR and SGS. The possible evolution of internal cracks for the grouted specimens was classified into three stages: (1) cracks initiating along the interfaces between the coal blocks and solidified grouts; (2) cracks initiating and propagating in coal blocks; and (3) cracks continually propagating successively in the interfaces, the coal blocks, and the solidified grouts near the coal blocks. Finally, after the propagation and coalescence of internal cracks through the entire specimens, there were two main failure modes for the failed grouted specimens. These modes included the inclined shear failure occurring in the more crushed coal rock and the splitting failure occurring in the less crushed coal rock. Both modes were different from the single failure mode along the fissure for the fractured coal rock after grouting solidification. However, compared to the brittle failure of intact coal rock, grouting into the different crushed degree coal rocks resulted in ductile deformation after the peak strength for the grouted specimens was attained.

The Physical Properties Variation of Grout Materials and Improvement of Grouting Effects on Application of High Performance Injection Equipment (고성능 주입장비의 적용에 따른 주입재의 물성변화 및 주입효과 증진에 관한 연구)

  • 천병식;김진춘;김백영
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.4
    • /
    • pp.179-190
    • /
    • 2003
  • The grout based on solution type makes it difficult to get the improvement of ground strength and the effefct of water curtain because it has lower strength and durability than suspension type. Nowadays, the technology of particle acceleration, that enhance the material permeability, such as grout based on solution type, and inexpensive grout, is being required. For these reasons, in this study, using wet milling system, we evaluated physical properties of manufactured factors such as water-cement ratio of particles before being milled, optimum milling capacity by controlling milling time and rpm, viscosity of materials, permeation coefficient, and unconfined compressive strength. Also, using micro wet milling apparatus which could manufacture ordinary Portland cement and high speed shear mix which could forcefully separate conglomerate particles in situ, we performed electrical resistivity investigation and falling head permeability tests to analyze differences of grouting effects. From these results, we found that the permeability of the applied equipment was much superior, and in the case of using high speed shear mixer, particles of grout material were well separated.

Evaluation of grout for reinforcing soft section in subsea tunnel (해저터널 연약 구간 보강용 그라우트 내구성 평가)

  • Moon, Junho;Jeong, Ghangbok;Xin, Zhenhua;Kim, Younguk
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.6
    • /
    • pp.947-956
    • /
    • 2018
  • Subsea tunnel built in abyssal zone is exposed to environment under high water pressure caused by seawater and etc., and this high pressure from underground water may facilitate leaching. In particular, since underground water can be easily flown in during construction, this might cause many problems related to cutoff water. Therefore, in order to secure safety, it is necessary to apply grouting equipment and materials which are appropriate to construction environment. Accordingly, in this research, evaluation was made on the physical characteristics of grouting materials (strength, leaching and etc. depending on curing methods for each of used materials and condition) which can be applied during subsea tunnel construction. As a result of this research, stable strength increase was found in CA and CSA type, and it is determined that no decrease in their durability was found, so these can be used as stable materials for structures under influenced by seawater.

A study on Gap Parameter and Influence Area of Ground Settlement Using Back Analysis Constructed by Shield TBM with Shallow Depth (천층터널 쉴드TBM에서 역해석을 이용한 Gap Parameter 및 지표침하 영향범위에 대한 연구)

  • Koh, Sung-Yil;Kwon, Sung-Ju;Hwang, Chang-Hee;Kim, Sang-In;Choo, Seok-Yeon
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.1509-1518
    • /
    • 2011
  • Shield TBM tunneling method has been getting the spotlight for urban tunneling. It can be minimized the civil complaint during construction and possible safe tunneling. But the settlement has occurred inevitably due to characteristics of shield TBM equipment. For this reason, the civil complaint can occur in urban areas when tunnel with shallow depth passes through neighboring building or residential area. In this study, the occurrence factors of settlement according to shield TBM tunneling and the tendency of ground settlement by strata condition had analyzed. It is suggested that the practical settlement estimation method and minimizing method of ground settlement under simultaneous backfill grouting condition through measurement results and back analysis data using gap parameter.

  • PDF

Mixed Design of Grouting Materials for Settlement Restoration Using Micro Cement (마이크로시멘트를 이용한 침하복원용 그라우팅재료의 배합 설계)

  • Lee, Il-Wha;Lee, Sung-Jin;Yun, Won-Min;Park, Sung-Ki
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.1786-1792
    • /
    • 2011
  • If the concrete track is settled excessively, it must be restored or reinforced immediately. Especially, reinforcement/restoration method should be applied without affecting on train operation. To deal with this problem, special equipment, process and material should be prepared. This paper suggest a special mixing ratio to restore the settled concrete track. Materials are classified the quick hardening mortar and the middle hardening mortar. The quick hardening mortar is used to restore the settled track and the middle hardening mortar is used to fill the void. These materials must have the appropriate gel time(1-40sec) and compressive strength($5kg/cm^2$). Various compounds is used and the micro cement is used as a main base.

  • PDF