• Title/Summary/Keyword: Grouting

Search Result 734, Processing Time 0.024 seconds

Applicability Analysis of an Improved Multistep Steel Pipe Grouting Method in Shallow Depth Railway Tunnels in Considering Safety and Constructability (저토피 철도터널구간의 안전 및 시공성을 고려한 개선된 강관다단 그라우팅 공법 적용성 분석)

  • Kim, Nakseok;Choi, Gisung;Kim, Seokhyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.40 no.1
    • /
    • pp.97-103
    • /
    • 2020
  • The newly improved multistep steel pipe grouting method was applied to an existing steel pipe-reinforced grouting method. It was applied in order to prevent a damage caused by ground failure from excessive grouting pressure in a tunnel construction. The tunnel goes under a highway and a ramp connected to a rest area on OO highway with 11.3~12.1 m depth cover and is a part of roadbed facility construction section ordered by OO public corporation. The improved grouting method provides pre-construction work condition assessment technique through new water injection limit test and grouting effect assessment technique by grouting type assessment. It also includes assessments on interval of joints, appropriate grouting pressure, and optimal operation time to be applied to current operations. Application of the grouting method allowed the smooth road management in shallow-depth grouting construction area located upper part of tunnel excavation. Moreover, the possibility of the application of the method not only to shallow-depth grouting construction but also to various steel pipe-reinforced grouting constructions was confirmed.

A Study about The Global Trend of Neo-Grouting Technology (최신 그라우팅 기술의 세계적인 동향에 관한 연구)

  • Kim, Jin-Chun;Kim, Sang-Gyun;Yoo, Byung-Sun;Kang, Hee-Jin
    • Journal of Korean Society of Disaster and Security
    • /
    • v.7 no.2
    • /
    • pp.25-34
    • /
    • 2014
  • This study researches on global technology trend in each of composing technology, such as grouting material, grouting equipment, and construction management technology, which grouting technology has been founded upon to improve relatively inadequate domestic grouting technology and to establish the global standard for overseas expansion in the future. As far as grouting material is concerned, while High-Penetration and High-Strength micro cement ($1.5{\mu}m$) has been developed in 2000's in Japan, JinChun Kim et al. (2014) has been developing hybrid type micro cement grouting material and examining specifications of different kinds of projects and countries to analyze the trend of grouting equipment development. The specification contains detailed requisite specification for materials, mixers, pumps, agitators, and packers and it has to satisfy the standard of different countries to win global contracts. Grouting management technology can be divided into four different generations and Scandinavian countries, such as Sweden, Norway, and Finland, Japan, and South Korea are recently doing vigorous researches on the Fourth generation which merges grouting technology with ICT.

Estimation of the Anisotropic Material Properties of Rock Masses with Permeation Grouting (그라우팅 강화터널의 설계 특성치 산정에 관한 연구)

  • Lee, Jun Seok;Bang, Chun Seok;Choe, Il Yun;Eom, Ju Hwan
    • Magazine of korean Tunnelling and Underground Space Association
    • /
    • v.1 no.1
    • /
    • pp.67-80
    • /
    • 1999
  • The Grout-reinforcement technique which is widely used during the excavation of a shallow or an endangered tunnel can be classified into a couple of groups according to the properties and injection methods of the grout. The reinforcement design will, therefore, take a different approach based on the grouting method under consideration. However, the injection procedure is mainly performed by the experience of the foreman rather than engineering judgement , specifically the permeation grouting through the rock joints and its reinforcement effect Is not fully under-stood during the design stage, In this study, the anisotropic material properties of the grout-reinforced rock masses are derived from the concept of composite materials and the effect of intact rock, vertical grouting and permeation grouting is, therefore, fully accounted for. Through the parametric studies on the characteristics of rock joints, intact rock and grouting materials, various case studies have been considered. The results, illustrated via the design charts, can be directly used during the reinforcement design.

  • PDF

The Impermeable Effect for Bedrock Constructed by Grouting (기반암에서 그라우팅에 의한 차수효과)

  • Yea, Geuguwen
    • Journal of the Korean GEO-environmental Society
    • /
    • v.10 no.2
    • /
    • pp.51-59
    • /
    • 2009
  • This study is based on field data obtained from rock grouting such as RQD value, Unit cement grout volume, Lugeon value(Lu), and Maximum grout pressure in four different dam sites. The relationship were analyzed and compared as follow. The cut-off effect after rock grouting in dam-foundation which are mostly consist of metamorphic rock is better than that of Sedimentary rock. And the impermeable effect after consolidation grouting is more efficiency than the impermeable effect after curtain grouting. The unit cement grout volume are increased as RQD value is higher in rock mass. But there is no relationship between RQD value and Lugeon value. In the sedimentary rock, which is more permeable than metamorphic rock, Lugeon value (Lu) is a linear function (Lu=0.22Vc) of unit cement grout volume (Vc). Cut-off effect of curtain grouting is less influential at each near holes which are already grouted than that of consolidation grouting. And the behavior characteristics of Lugeon value vs. the unit cement grout volume as the order of installations are almost the same.

  • PDF

Combined bi-borehole technology for grouting and blocking of flowing water in karst conduits: Numerical investigation and engineering application

  • Pan, Dongdong;Zhang, Yichi;Xu, Zhenhao;Li, Haiyan;Li, Zhaofeng
    • Geomechanics and Engineering
    • /
    • v.29 no.4
    • /
    • pp.391-405
    • /
    • 2022
  • A newly proposed grouting simulation method, the sequential diffusion solidification method was introduced into the numerical simulation of combined bi-borehole grouting. The traditional, critical and difficult numerical problem for the temporal and spatial variation simulation of the slurry is solved. Thus, numerical simulation of grouting and blocking of flowing water in karst conduits is realized and the mechanism understanding of the combined bi-borehole technology is promoted. The sensitivity analysis of the influence factors of combined bi-borehole grouting was investigated. Through orthogonal experiment, the influences of proximal and distal slurry properties, the initial flow velocity of the conduit and the proximal and distal slurry injection rate on the blocking efficiency are compared. The velocity variation, pressure variation and slurry deposition phenomenon were monitored, and the flow field characteristics and slurry outflow behavior were analyzed. The interaction mechanism between the proximal and distal slurries in the combined bi-borehole grouting is revealed. The results show that, under the orthogonal experiment conditions, the slurry injection rate has the greatest impact on blocking. With a constant slurry injection rate, the blocking efficiency can be increased by more than 30% when using slurry with weak time-dependent viscosity behavior in the distal borehole and slurry with strong time-dependent viscosity behavior in the proximal borehole respectively. According to the results of numerical simulation, the grouting scheme of "intercept the flow from the proximal borehole by quick-setting slurry, and grout cement slurry from the distal borehole" is put forward and successfully applied to the water inflow treatment project of China Resources Cement (Pingnan) Limestone Mine.

Reinforcement of the Structure Foundation using Grouting(C.G.S) (그라우팅(C.G.S)에 의한 구조물 기초 보강)

  • 천병식;김진춘;권형석
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.02a
    • /
    • pp.1-11
    • /
    • 2000
  • The use of Compaction Grouting evolved in 1950's to correct structural settlement of buildings. Over the almost 50 years, the technology has been developed and is currently used in wide range of applications. Compaction Grouting, the injection of a very stiff, 'zero-slump' mortar grout under relatively high pressure, displaces and compacts soils. It can effectively repair natural or man-made soil strength deficiencies in variety of soil formations. Major applications of Compaction Grouting include densifying loose soils or fill voids caused by sinkholes, poorly compacted fills, broken utilities, improper dewatering, or soft ground tunneling excavation. Other applications include preventing liquefation, re-leveling settled structures, and using compaction grout bulbs as structural elements of minipiles or underpinning. In this paper, on the basis of the case history constructed in this year, a study has been performed to analyze the basic mechanism of the Compaction Grouting. Also, the effectiveness of the ground improvement and the bearing capacity of the Compaction Pile has been verified by the Cone Penetration Test(CPT) and Load Test. Relatively uniform Compaction grouting column could be maintained by planning the Quality Control in the course of grouting. And, the Quality Control Plan has been conceived using grout pressure, volume of grout and drilling depth.

  • PDF

Grouting effects evaluation of water-rich faults and its engineering application in Qingdao Jiaozhou Bay Subsea Tunnel, China

  • Zhang, Jian;Li, Shucai;Li, Liping;Zhang, Qianqing;Xu, Zhenhao;Wu, Jing;He, Peng
    • Geomechanics and Engineering
    • /
    • v.12 no.1
    • /
    • pp.35-52
    • /
    • 2017
  • In order to evaluate the grouting effects of water-rich fault in tunnels systematically, a feasible and scientific method is introduced based on the extension theory. First, eight main influencing factors are chosen as evaluation indexes by analyzing the changes of permeability, mechanical properties and deformation of surrounding rocks. The model of evaluating grouting effects based on the extension theory is established following this. According to four quality grades of grouting effects, normalization of evaluation indexes is carried out, aiming to meet the requirement of extension theory on data format. The index weight is allocated by adopting the entropy method. Finally, the model is applied to the grouting effects evaluation in water-rich fault F4-4 of Qingdao Jiaozhou Bay Subsea Tunnel, China. The evaluation results are in good agreement with the test results on the site, which shows that the evaluation model is feasible in this field, providing a powerful tool for systematically evaluating the grouting effects of water-rich fault in tunnels.

Long-term Behaviour Characteristics of Pressurized Grouting Soil Nails from the Field Pull-Out Tests (현장인발시험을 통한 가압 그라우팅 쏘일네일의 장기 인발거동특성)

  • Park, Si-Sam;Lee, Hoon-Yeoun;Park, Joo-Suck;Lee, Hong-Kyu
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.137-144
    • /
    • 2005
  • Recently a pressurized grouting soil nail is demanded due to problems beyond of economical and engineering purpose. In this study, a newly modified soil nailing technology named as the PGSN (Pressurized Grouting Soil Nailing) system is respected to reduced displacements of nails and increase of global slope stability. And effects of various factors related to the design of the PGSN system, such as the length of the soil nail, injected pressure and W/C ratio of cement grout in the pressurized grouting soil nail are examined throughout a series of the displacement-controlled field pull-out tests. Displacement-controlled field pull-out tests are performed in the present study and the volume of grouting are also evaluated based on the measurements. In addition, both short-term and long-term characteristics of pull-out deformations of the newly proposed PGSN system are analyzed and compared with those of the general soil nailing system by carrying out the stress-controlled field pull-out tests. From the pull-out characteristics of pressurized grouting soil nails, it is found that the effect of the length of the soil nail, injected pressure and W/C ratio of cement grout are important parameters.

  • PDF

Investigation of the Optimum Injection Pressure in Pressure Grouting by Laboratory Model Tests (모형시험을 통한 지반보강 그라우팅의 적정주입압력 연구)

  • 박종호;박용원
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.2
    • /
    • pp.217-225
    • /
    • 2003
  • The ground reinforcement effect of pressure grouting depends on grout penetration into ground. It is not, however, easy to predict the grout penetration in the design process because of the heterogeneity of ground conditions. This study investigates the proper grouting pressure and grouting method through laboratory model tests for pressure grouting using loose to medium dense crushed rock and sandy ground using specially designed and fabricated device. The optimum injection pressure, grout quantity and injection time are investigated through performing pressure grouting under changing conditions of injection in this test. From the test results, it was found that optimum injection pressure covers the range of 3 to 4kg/cm$^2$.

A Study on Improvement Effects on Fractured Rock Mass by Consolidation Grouting in Tunnel (터널 내 파쇄지반 개량을 위한 압밀그라우팅 성능 평가 연구)

  • 정교철;서용석
    • The Journal of Engineering Geology
    • /
    • v.12 no.2
    • /
    • pp.189-202
    • /
    • 2002
  • In this study we carried out the in situ test in order to explore the grouting effects of fracture zone on mechanical properties and permeability in tunnel. After consolidation grouting the rock mass averaged 2.30 in the modulus of deformation and 2.49 in the modulus of elasticity. The results obtained through this study are as follows. (1) With advance of the injection steps, the total cement take shows uniformity of the rock mass. (2) After consolidation grouting the improvement of permeability can be identified by reduction of Lugeon values. (3) Grouting injection can improve deformability and strength of rock mass. (4) More mechanical improvement appears for more deformable rock mass before grouting injection.