• 제목/요약/키워드: Grout/soil formation

검색결과 11건 처리시간 0.023초

열응답 시험과 변수 평가 모델을 이용한 그라우트/토양 혼합층의 열전도도 산정 (Evaluation of Thermal Conductivity for Grout/Soil Formation Using Thermal Response Test and Parameter Estimation Models)

  • 손병후;신현준;안형준
    • 설비공학논문집
    • /
    • 제17권2호
    • /
    • pp.173-182
    • /
    • 2005
  • The Performance of U-tube ground heat exchanger for geothermal heat Pump systems depends on the thermal properties of the soil, as well as grout or backfill materials in the borehole. In-situ tests provide a means of estimating some of these properties. In this study, in-situ thermal response tests were completed on two vertical boreholes, 130 m deep with 62 mm diameter high density polyethylene U-tubes. The tests were conducted by adding a monitored amount of heat to water over a $17\~18$ hour period for each vertical boreholes. By monitoring the water temperatures entering and exiting the loop and heat load, overall thermal conductivity values of grout/soil formation were determined. Two parameter estimation models for evaluation of thermal response test data were compared when applied on the same temperature response data. One model is based on line-source theory and the other is a numerical one-dimensional finite difference model. The average thermal conductivity deviation between measured data and these models is of the magnitude $1\%$ to $5\%$.

점도 변화와 폐색 현상을 고려한 그라우트재의 침투 특성 (Effect of Viscosity and Clogging on Grout Penetration Characteristics)

  • 김종선;최용기;박종호;우상백;이인모
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2006년도 춘계 학술발표회 논문집
    • /
    • pp.414-423
    • /
    • 2006
  • Many construction projects adopt grouting technology to prevent the leakage of groundwater or to improve the shear strength of the ground. Recognition as a feasible field procedure dates back to 1925, Since then, developments and field use have increased rapidly. According to improvement of grout materials, theoretical study on grout penetration characteristics is demanded. Fluid of grout always tends to flow from higher hydraulic potential to lower and the motion of grout is also a function of formation permeability. Viscosity of grout is changed by chemical action while grout moves through pores. Due to the increment of viscosity, permeability is decreased. Permeability is also reduced by grout particle deposits to the soil aggregates. In this thesis, characteristics of new cement grout material that is developed recently is studied: injectable volume of new grout material is tested in two different sizes of sands, and the method to calculate injectable volume of grout is suggested with consideration of change in viscosity and clogging phenomena. The calculated values are compared with injection test results. Viscosity of new grout material is found to be an exponential function of time. And lumped parameter $\theta$ of new grout material to be used for assessing deposition characteristics is estimated by comparing deposit theory with injection test results considering different soil types and different injection pressure.

  • PDF

점도변화와 흡착현상을 고려한 시멘트계 그라우트재의 새로운 침투 기준 (A New Groutability Criterion of Cement-based Grout with Consideration of Viscosity and Filtration Phenomenon)

  • 김종선;이인모;이문선;최항석
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2009년도 춘계 학술발표회
    • /
    • pp.154-163
    • /
    • 2009
  • The groutability depends on the properties of the grout, its injection processes, and on the mechanical properties of the soil formation. During the process of pouring cement-based grouting into a porous medium, a variation with time occurs in the viscosity of grout suspension. In addition the particle filtration phenomenon will limit the expansion of the grouted zone because cement particles are progressively stagnant within the soil matrix. In this paper, a closed-form solution was derived by implementing the mass balance equations and the generalized phenomenological filtration law, which can be used to evaluate the deposition of cement-based grout in the soil matrix. The closed-form solution relevant to a particular spherical flow was modified by a step-wise numerical calculation, considering the variable viscosity caused by a chemical reaction, and the decrease in porosity resulting from grout particle deposition in the soil pores. A series of pilot-scale chamber injection tests was performed to verify that the developed step-wise numerical calculation is able to evaluate the injectable volume of grout and the deposition of grout particles. The results of the chamber injection tests concurred well with that of the step-wise numerical calculation. Based on the filtration phenomenon, a new groutability criterion of cement-based grout in a porous medium was proposed, which might facilitate a new insight in the design of the grouting process.

  • PDF

자켓앵커 거동특성에 관한 연구 (A Study on the Behaviour Mechanism of Jacket Anchor)

  • 김동휘;김인철;공현석;이우진
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2008년도 춘계 학술발표회 초청강연 및 논문집
    • /
    • pp.1240-1249
    • /
    • 2008
  • Jacket anchor was developed to increase the pullout resistance of general ground anchor in soft ground, and the mechanism of pullout resistance of jacket anchor was analyzed. Also, the ultimate bond stress of jacket anchor was estimated by ultimate resistance which is determined by field tests. Grout milk was injected into the jacket to make grout bulb of jacket anchor. The formation of grout bulb of jacket anchor increases the diameter of grout bulb, ground strength and confining pressure between anchor grout and soil. From the twelve field test results, it was observed that the pullout resistance of jacket anchor is 15.38~295.02%(average 83.53%) greater than that of general ground anchor, and plastic deformation of jacket anchor is 20.78~1,496.45%(average 288.78%) smaller than that of general ground anchor at the same load cycle. Especially, it was investigated that the increase of ultimate resistance over 200% and the reduction of plastic deformation over 600% was obtained in gravel layer. It means that the jacket anchor is superior to the general ground anchor in gravel layer. Finally, the ultimate bond stress was proposed to design jacket anchor.

  • PDF

점도 변화와 폐색 현상을 고려한 그라우트재의 침투 특성 (Effect of Viscosity and Clogging on Grout Penetration Characteristics)

  • 김종선;최용기;박종호;우상백;이인모
    • 한국지반공학회논문집
    • /
    • 제23권4호
    • /
    • pp.5-13
    • /
    • 2007
  • 1925년 이후 지반개량공법은 많은 발전을 거듭해 왔으며, 많은 건설현장에서 차수의 목적 또는 지반강도 증진의 목적 등으로 그라우팅이 적용되어왔다. 지반개량공법의 발전과 더불어 그라우트재의 종류 또한 그 수가 증가되었으며, 그라우트재의 침투특성과 관련된 이론적인 연구의 필요성이 요구되었다. 전수두차에 의해 그라우트재의 흐름이 발생되며, 그라우트재의 이동은 지반의 투수계수의 영향을 받는다. 그라우트재가 지반의 간극을 지날 때, 그라우트재의 화학반응에 의해 점도가 변화되며, 따라서 점도 증가로 인하여 투수계수는 감소하게 된다. 또한 현탁액형의 그라우트재의 경우 그라우트재 입자에 의한 지반 간극의 폐색으로 투수계수가 감소하게 된다. 본 논문에서는 새로 개발된 그라우트재의 물리적-화학적 특성을 연구하고, 입경이 다른 두 종류의 모형지반에서 실시된 신개발 그라우트재의 주입실험 결과와 비교하여 점도변화와 폐색현상을 고려한 그라우트재의 침투 가능성을 이론적으로 제시하고자 한다. 측정된 신개발 그라우트재의 점도는 시간의 지수함수 형태를 보였으며, 실험결과와 비교하여 폐색현상과 관련된 계수 $\delta$를 추정하였다. 그라우트재의 점도 변화는 시간에 따른 주입량에 많은 영향을 주는 것으로 나타났으며, 간극의 크기가 작은 지반에서 주입실험을 실시한 결과 폐색현상의 영향으로 주입량이 현저하게 감소되는 것으로 나타났다.

투수계수 이방성을 고려한 수평 약액 그라우트 구근의 침투 유효 반경에 관한 수치해석적 연구 (Effect of Permeability Anisotropy on the Effective Radius of Grout Bulb in Horizontal Permeation Grouting - Numerical Study)

  • 백승훈;주현우;권태혁;한진태;이주형;유완규
    • 한국지반공학회논문집
    • /
    • 제36권11호
    • /
    • pp.149-156
    • /
    • 2020
  • 약액 그라우팅은 지반의 강도 증진 및 차수 공법에 성공적으로 이용되어 왔으나, 그라우트의 유동은 지층의 투구계수 이방성에 크게 영향을 받는다. 따라서, 본 연구에서는 전산 유체 역학법을 이용하여 투수계수의 이방성이 수평 약액 그라우팅의 유효 반경에 미치는 영향을 알아보았다. 먼저 수평 방향 약액 주입 시뮬레이션을 위하여 공극 매질내 2상 점성 유체의 유동을 모델링하였고, 경화에 따른 확산과 점성 변화 또한 고려했다. 수치해석 결과, 투수계수의 이방성으로 인해 그라우트 구근의 형태가 타원체로 발달했고, 용해에 따른 확산 때문에 그라우트 구근의 모서리로 갈수록 공극내 그라우트 포화도가 점진적으로 감소했다. 이 결과를 바탕으로 10, 50, 90의 임계포화도를 설정하여 그에 따른 수평 방향 및 수직 방향 유효 반경을 산출하였다. 또한, 0.01 - 100의 수평·수직 방향 투수계수비에 따른 유효 반경을 산출하여 회귀식을 개발했다. 본 연구 결과는 투수계수 이방성을 가진 지층의 특성을 이용한 보다 효율적인 약액 그라우트 주입 전략 계획에 기여할 것으로 기대한다.

지중 열교환기의 순환수에 의한 열응력 및 열전달 거동 분석 (Analysis of thermal stress and heat transfer due to circulating fluid in ground heat exchanger)

  • 길후정;이강자;이철호;최항석;최효범
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2009년도 세계 도시지반공학 심포지엄
    • /
    • pp.385-395
    • /
    • 2009
  • In this study, a series of numerical analysis has been accomplished on the thermal performance and sectional efficiency of a closed-loop vertical ground heat exchanger (U-loop) in a geothermal heat pump system (GHP) considering the circulating fluid, pipe, grout and soil formation. A finite element analysis program, ABAQUS, was employed to evaluate the temperature distribution on the cross section of the U-loop system involving HDPE pipe/grout/formation and to compare sectional efficiency between the conventional U-loop and a new latticed HDPE pipe system. Especially, the latticed pipe is equipped with a thermal insulation zone in order to reduce thermal interference between the inflow pipe and the outflow pipe. Also, a thermal stress analysis was performed with the aid of ABAQUS. 3-D finite volume analysis program, FLUENT, was adapted to analyze a coupled system between fluid circulation in the pipe and heat transfer and simulate an operating process of the closed-loop vertical ground heat exchanger. In this analysis, the effect of the thermal properties of grout, rate of circulation pump, distance between the inflow pipe and the outflow pipe, and the effectiveness of the latticed HDPE pipe system are taken into account.

  • PDF

연약지반상에 자켓팩앵커의 적용과 거동특성 (Behavior and Application of Jacket pack anchor in Soft ground)

  • 김태섭;조윤주;정창원
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2010년도 추계 학술발표회
    • /
    • pp.1065-1072
    • /
    • 2010
  • The excavation site in the new city of inchon songdo is distributed with soft reclaimed soil and marine deposit. So, the general ground anchor is not applied to this layer of soft ground as the earth retaining support system, because of settlement. And then, Jacket pack anchor which is newly developed in order to increasing the pullout resistance by certain grout bulb formation and expansion effect in soft ground is applied to this site instead of the general ground anchor. Though the maximum horizontal displacement shows about 30mm~100mm (The maximum horizontal displacement/excavation depth$\fallingdotseq$0.32~1.0%) according to excavation sequence, generally excavation work finished stably. Also, load cell after setting shows almost increasing trend with increasing horizontal displacement. It means that the settlement of Jacket pack anchor in soft ground is good. From the result of this case, we knew that Jacket pack anchor was able to use the earth retaining support system in soft ground. Using Jacket pack anchor in soft ground, The allowance of the horizontal displacement is applied more than general value considering soil factors.

  • PDF

1차원 모델에 의한 보어홀 열거동 해석 및 현지측정 (A Study of Borehole Thermal Behavior with 1-Dimensional Model;Field Test Analysis included)

  • 김대기;우정선;노정근;이세균
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2007년도 추계학술대회 논문집
    • /
    • pp.550-554
    • /
    • 2007
  • A one-dimensional heat transfer model coupled with parameter estimation is developed in this study to predict the effective thermal conductivities of soil formation and borehole resistances from in situ field test data. In this application a new method of using initial ignoring time(IIT) obtained from error estimation is tried and turned out to be successful in determining soil thermal conductivities. The validity of this model is accomplished through comparison of the predicted temperature profiles of the model with the data from laboratory scale experimental setting. Eleven test boreholes were constructed in Ochang, Chungcheong Buk Do, and thermal response test was carried out with each borehole. The results of the in situ tests were analyzed with our 1-D numerical model and compared with the results of line source method. The comparison shows that the thermal properties from line source method is a little lower (${\sim}95%$)than those from numerical method. The reason of such result seems to be the lower thermal conductivity of grout material, which is not counted in line source method.

  • PDF

수치해석을 통한 수직 밀폐형 지중열 교환기의 열전달 거동 연구 (Thermal Behavior of Vertical Ground Heat Exchanger by Numerical Simulation)

  • 길후정;이철호;김주영;최항석
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2008년도 추계 학술발표회
    • /
    • pp.1638-1646
    • /
    • 2008
  • This paper presents a series of numerical simulations on the thermal performance and sectional efficiency of a closed-loop vertical ground heat exchanger (U-loop) equipped in a geothermal heat pump system (GHP). A 2-D finite element analysis, ANSYS, was employed to evaluate the temperature distribution on the borehole cross section involving HDPE pipe/grout/soil formation to compare the sectional efficiency between the conventional U-loop and a new latticed HDPE pipe system which is equipped with a thermally insulating latice in order to reduce thermal interference between the inflow and outflow pipes. In addition, a 3-D finite volume analysis (Fluent) was used to simulate the operating process of the closed-loop vertical ground heat exchanger by considering the effect of grout's thermal properties, rate of circulation pump, distance between the inflow and outflow pipes, and the effectiveness of the latticed HDPE pipe system. It was observed that the thermal interference between the two strands of U-loop is of importance in determining the efficiency of the ground heat exchanger, and thus it is highly recommendable to modify the cross section configuration of the conventional U-loop system by including a thermally insulating latice between the two strands.

  • PDF