• Title/Summary/Keyword: Group-specific labeling

Search Result 30, Processing Time 0.023 seconds

$Site-Specific^{99m}$Tc-Labeling of Antibody Using Dihydrazinoph-thalazine (DHZ) Conjugation to Fc Region of Heavy Chain

  • Jeong, Jae-Min;Lee, Jae-Tae;Paik, Chang-Hum;Kim, Dae-Kee;Lee, Dong-Soo;Chung, June-Key;Lee, Myung-Chul
    • Archives of Pharmacal Research
    • /
    • v.27 no.9
    • /
    • pp.961-967
    • /
    • 2004
  • The development of an antibody labeling method with $^{99m}$Tc is important for cancer imaging. Most bifunctional chelate methods for $^{99m}$Tc labeling of antibody incorporate a $^{99m}$Tc chelator through a linkage to lysine residue. In the present study, a novel site-specific $^{99m}$Tc labeling method at carbohydrate side chain in the Fc region of 2 antibodies (T101 and rabbit anti-human serum albumin antibody (RPAb)) using dihydrazinophthalazine (DHZ) which has 2 hydrazino groups was developed. The antibodies were oxidized with sodium periodate to pro-duce aldehyde on the Fc region. Then, one hydrazine group of DHZ was conjugated with an aldehyde group of antibody through the formation of a hydrazone. The other hydrazine group was used for labeling with $^{99m}$Tc. The number of conjugated DHZ was 1.7 per antibody. $^{99m}$Tc labeling efficiency was 46-85% for T101 and 67∼87% for RPAb. Indirect labeling with DHZ conjugated antibodies showed higher stability than direct labeling with reduced antibodies. High immunoreactivities were conserved for both indirectly and directly labeled antibodies. A biodistribution study found high blood activity related to directly labeled T1 01 at early time point as well as low liver activity due to indirectly labeled T101 at later time point. However, these findings do not affect practical use. No significantly different biodistribution was observed in the other organs. The research concluded that DHZ can be used as a site-specific bifunctional chelating agent for labeling antibody with $^{99m}$Tc. Moreover, $^{99m}$Tc labeled antibody via DHZ was found to have excellent chemical and biological properties for nuclear medicine imaging.edicine imaging.

Chemical Modification of Transducin with Dansyl Chloride Hinders Its Binding to Light-activated Rhodopsin

  • Kosoy, Ana;Moller, Carolina;Perdomo, Deisy;Bubis, Jose
    • BMB Reports
    • /
    • v.37 no.2
    • /
    • pp.260-267
    • /
    • 2004
  • Transducin (T), the heterotrimeric guanine nucleotide binding protein in rod outer segments, serves as an intermediary between the receptor protein, rhodopsin, and the effector protein, cGMP phosphodiesterase. Labeling of T with dansyl chloride (DnsCl) inhibited its light-dependent guanine nucleotide binding activity. Conversely, DnsCl had no effect on the functionality of rhodopsin. Approximately 2-3 mol of DnsCl were incorporated per mole of T. Since fluoroaluminate was capable of activating DnsCl-modified T, this lysine-specific labeling compound did not affect the guanine nucleotide-binding pocket of T. However, the labeling of T with DnsCl hindered its binding to photoexcited rhodopsin, as shown by sedimentation experiments. Additionally, rhodopsin completely protected against the DnsCl inactivation of T. These results demonstrated the existence of functional lysines on T that are located in the proximity of the interaction site with the photoreceptor protein.

Difference between Korean and Occidental Group-specific Label-based Probabilistic Brain Atlas

  • Gu, Bang-Bon;Lee, Jong-Min
    • The Magazine of the IEIE
    • /
    • v.36 no.11
    • /
    • pp.66-82
    • /
    • 2009
  • Probabilistic atlases for the human brain structure are more suitable than single brain atlases for representing population anatomy. In this study, we hypothesized the group-specific probabilistic atlas for accurate characteristic feature coding. Our proposed method for a new group comparison study, using a subpopulation specific probabilistic atlas, was based on this hypothesis. A knowledge-based automatic labeling technique using nonlinear registration was applied to encode group-specific regional probabilistic information. Direct atlas-based comparison using volume counting above the probability threshold, distance measurement and correlation analysis were performed based on the probabilistic atlas. Here, we applied this method for comparison between Korean and occidental groups. The results showed that this method could provide simple but intuitive regions of interest-based group analysis for the entire cortex area.

  • PDF

A Study on Gene Detection using Non-labeling DNA

  • Choi Yong-Sung;Lee Kyung-Sup;Kwon Young-Soo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.10
    • /
    • pp.960-965
    • /
    • 2006
  • This research aims to develop the multiple channel electrochemical DNA chip using microfabrication technology. At first, we fabricated a high integration type DNA chip array by lithography technology. Several probe DNAs consisting of thiol group at their 5-end were immobilized on the gold electrodes. Then target DNAs were hybridized and reacted. Cyclic voltammetry showed a difference between target DNA and control DNA in the anodic peak current values. Therefore, it is able to detect a plural genes electrochemically after immobilization of a plural probe DNA and hybridization of non-labeling target DNA on the electrodes simultaneously. It suggested that this DNA chip could recognize the sequence specific genes.

A study on the body fluid antigen of Clonorchis sinensis using immunogold labeling method (면역황금 표기법을 이용한 간흡충의 체액 항원에 관한 연구)

  • Ju, Bong-Deok;Im, Han-Jong;Kim, Su-Jin
    • Parasites, Hosts and Diseases
    • /
    • v.28 no.1
    • /
    • pp.11-24
    • /
    • 1990
  • In order to observe the antigenic localization in the tissues of the adult Clonorchis sinensis, immunogold labeling method was applied using serum immunoglobulins (IgG) of either worm·infected rabbits (group I) or antigen-immunized rabbits (group II) (by the body quid obtained from the adult worms). The electron micrographs of the sectioned worm tissue antigens, embedded in Lowicryl HM 20 medium and stained with protein A-gold complex (particle sixte: 12 nm), were compared between the group I and group II. The gold particles were observed in the interstitial matrix of the worm parenchyma, the epithelial lamellae of the cecum, and the cecal lumen both in group I and II. But the particles were in general more concentrated in group II. The gold particles were not observed on the basal lamina of the tegument or on vitelline glands in group I, while they were highly concentrated on those areas in group II. There were also differences in the antigenicity of interstitial matrix(reacted with group I IgG) and head part(reacted with group II IgG) of the sperm cells in the seminal receptacle. Conclusively, it is suggested that the substances comprising the basal lamina of the tegument or vitelline glands act as specific antigens reacting with antigen(body quid) immunized rabbit IgG. On the other hand, the substances in the cecal lumen and cecal epithelial lamellae are thought to be the specific antigen that react with the worm-infected rabbit IgG.

  • PDF

Genome Detection Using an DNA Chip Array and Non-labeling DNA (비수식화 바이오칩 및 유전자 검출)

  • Choi, Yong-Sung;Lee, Kyung-Sup
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.402-403
    • /
    • 2006
  • This research aims to develop the multiple channel electrochemical DNA chip using microfabrication technology. At first, we fabricated a high integration type DNA chip array by lithography technology. Several probe DNAs consisting of thiol group at their 5-end were immobilized on the gold electrodes. Then target DNAs were hybridized and reacted. Cyclic voltammetry showed a difference between target DNA and control DNA in the anodic peak current values. Therefore, it is able to detect a plural genes electrochemically after immobilization of a plural probe DNA and hybridization of non-labeling target DNA on the electrodes simultaneously. It suggested that this DNA chip could recognize the sequence specific genes.

  • PDF

Fluorescence Detection of Cell Death in Liver of Mice Treated with Thioacetamide

  • Kang, Jin Seok
    • Toxicological Research
    • /
    • v.34 no.1
    • /
    • pp.1-6
    • /
    • 2018
  • The purpose of this study was to detect cell death in the liver of mice treated with thioacetamide (TAA) using fluorescence bioimaging and compare this outcome with that using conventional histopathological examination. At 6 weeks of age, 24 mice were randomly divided into three groups: group 1 (G1), control group; group 2 (G2), fluorescence probe control group; group 3 (G3), TAA-treated group. G3 mice were treated with TAA. Twenty-two hours after TAA treatment, G2 and G3 mice were treated with Annexin-Vivo 750. Fluorescence in vivo bioimaging was performed by fluorescence molecular tomography at two hours after Annexin-Vivo 750 treatment, and fluorescence ex vivo bioimaging of the liver was performed. Liver damage was validated by histopathological examination. In vivo bioimaging showed that the fluorescence intensity was increased in the right upper part of G3 mice compared with that in G2 mice, whereas G1 mice showed no signal. Additionally ex vivo bioimaging showed that the fluorescence intensity was significantly increased in the livers of G3 mice compared with those in G1 or G2 mice (p < 0.05). Histopathological examination of the liver showed no cell death in G1 and G2 mice. However, in G3 mice, there was destruction of hepatocytes and increased cell death. Terminal deoxynucleotidyl transferase dUTP nick end labeling staining confirmed many cell death features in the liver of G3 mice, whereas no pathological findings were observed in the liver of G1 and G2 mice. Taken together, fluorescence bioimaging in this study showed the detection of cell death and made it possible to quantify the level of cell death in male mice. The outcome was correlated with conventional biomedical examination. As it was difficult to differentiate histological location by fluorescent bioimaging, it is necessary to develop specific fluorescent dyes for monitoring hepatic disease progression and to exploit new bioimaging techniques without dye-labeling.

RNase Resistant RNA in the Egg of Xenopus laevis: I. RNA Extraction and in Vitro Labeling

  • Chung, Hae-Moon
    • The Korean Journal of Zoology
    • /
    • v.20 no.1
    • /
    • pp.9-18
    • /
    • 1977
  • RNA was extracted from the eggs of Xenopus laevis to do preliminary experiments before testing the possibility that if RNase resistant RNA molecules exist in the amphibian egg. Chromatography on Sephadex G-100 column indicated 3 peaks consistently. Only high molecular weight RNA species eluted in the first peak were labeled in vitro using $^{3}H$-dimethyl sulfate to eliminate the possible contribution of base paired oligonucleotides from tRNA. By this method, high specific activity could be obtained and the attached methyl groups were quite stable.

  • PDF

Genome Detection Using an Integrated type DNA Chip Microelectrode-array and Non-labeling Target DNA (집적형 DNA칩 미소 전극 어레이 및 비수식화 표적 DNA를 이용한 유전자 검출)

  • Choi, Yong-Sung;Lee, Hea-Yeon;Tanaka, Hiroyuki;Tanaka, Hidekafu;Kwon, Young-Soo;Kawai, Tomoii
    • Proceedings of the KIEE Conference
    • /
    • 2001.11a
    • /
    • pp.274-276
    • /
    • 2001
  • This research aims to develop the multiple channel electrochemical DNA chip using microfabrication technology. At first, we fabricated a high integration type DNA chip array by lithography technology. Several probe DNAs consisting of thiol group at their 5-end were immobilized on the sold electrodes. Then target DNAs were hybridized and reacted. Cyclic voltammetry showed a difference between target DNA and control DNA in the anodic peak current values. Therefore, it is able to detect a plural genes electrochemically after immobilization of a plural probe DNA and hybridization of non-labeling target DNA on the electrodes simultaneously. It suggested that this DNA chip could recognize the sequence specific genes.

  • PDF

Expression of Kainate Glutamate Receptors in Type II Cells in Taste Buds of Rats

  • Lee, Sang-Bok;Lee, Cil-Han;Cho, Young-Kyung;Chung, Ki-Myung;Kim, Kyung-Nyun
    • International Journal of Oral Biology
    • /
    • v.33 no.3
    • /
    • pp.83-89
    • /
    • 2008
  • Glutamate-induced cobalt uptake reveals non-NMDA glutamate receptors (GluRs) in rat taste bud cells. Previous studies suggest that glutamate-induced cobalt uptake in taste cells occurs mainly via kainate type GluRs. Cobaltstained cells were immunoreactive against GluR6 and KA1 subunits of GluRs. However, the functions of those type of receptors are not known yet. It is important question which types of taste cells are cobalt-stained when stimulated by glutamate and whether they express these kinds of GluRs. Circumvallate and foliate papilla of Sprague-Dawley rats (45-60 days old) were used. A cobalt-staining technique combined with immunohistochemistry against specific markers for taste bud cell types, such as blood group H antigen (BGH), $\alpha$-gustducin (Gus), or neural cell adhesion molecule (NCAM) was employed. We also performed double labeling of GluR6 or KA1 subunits of GluR with each specific marker for taste bud cell types. Lots of cobaltstained taste bud cells expressed Gus-like immunoreactivity, and subsets of the cobalt stained cells appeared NCAM- or BGH-like immunoreactivity. Stimulation with 1 mM glutamate significantly increased the number of cobaltstained cells in Gus-like immunoreactive cells, but not in NCAM- or BGH-like immunoreactive cells. In the double labeling experiments, GluR6 and KA1 subunits of GluRs were mainly expressed with Gus. These results suggest that kainate glutamate receptors preferentially expressed in type II taste bud cells in rat.