• Title/Summary/Keyword: Group Homotopy

Search Result 69, Processing Time 0.019 seconds

GOTTLIEB GROUPS AND SUBGROUPS OF THE GROUP OF SELF-HOMOTOPY EQUIVALENCES

  • Kim, Jae-Ryong;Oda, Nobuyuki;Pan, Jianzhong;Woo, Moo-Ha
    • Journal of the Korean Mathematical Society
    • /
    • v.43 no.5
    • /
    • pp.1047-1063
    • /
    • 2006
  • Let $\varepsilon_#(X)$ be the subgroups of $\varepsilon(X)$ consisting of homotopy classes of self-homotopy equivalences that fix homotopy groups through the dimension of X and $\varepsilon_*(X) $ be the subgroup of $\varepsilon(X)$ that fix homology groups for all dimension. In this paper, we establish some connections between the homotopy group of X and the subgroup $\varepsilon_#(X)\cap\varepsilon_*(X)\;of\;\varepsilon(X)$. We also give some relations between $\pi_n(W)$, as well as a generalized Gottlieb group $G_n^f(W,X)$, and a subset $M_{#N}^f(X,W)$ of [X, W]. Finally we establish a connection between the coGottlieb group of X and the subgroup of $\varepsilon(X)$ consisting of homotopy classes of self-homotopy equivalences that fix cohomology groups.

POSTNIKOV SECTIONS AND GROUPS OF SELF PAIR HOMOTOPY EQUIVALENCES

  • Lee, Kee-Young
    • Bulletin of the Korean Mathematical Society
    • /
    • v.41 no.3
    • /
    • pp.393-401
    • /
    • 2004
  • In this paper, we apply the concept of the group \ulcorner(X,A) of self pair homotopy equivalences of a CW-pair (X, A) to the Postnikov system. By using a short exact sequence related to the group of self pair homotopy equivalences, we obtain the following result: for any Postnikov section X$\sub$n/ of a CW-complex X, the group \ulcorner(X$\sub$n/, A) of self pair homotopy equivalences on the pair (X$\sub$n/, X) is isomorphic to the group \ulcorner(X) of self homotopy equivalences on X. As a corollary, we have, \ulcorner(K($\pi$, n), M($\pi$, n)) ≡ \ulcorner(M($\pi$, n)) for each n$\pi$1, where K($\pi$,n) is an Eilenberg-Mclane space and M($\pi$,n) is a Moore space.

SELF-MAPS ON M(ℤq, n + 2) ∨ M(ℤq, n + 1) ∨ M(ℤq, n)

  • Ho Won Choi
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.36 no.4
    • /
    • pp.289-296
    • /
    • 2023
  • When G is an abelian group, we use the notation M(G, n) to denote the Moore space. The space X is the wedge product space of Moore spaces, given by X = M(ℤq, n+ 2) ∨ M(ℤq, n+ 1) ∨ M(ℤq, n). We determine the self-homotopy classes group [X, X] and the self-homotopy equivalence group 𝓔(X). We investigate the subgroups of [Mj , Mk] consisting of homotopy classes of maps that induce the trivial homomorphism up to (n + 2)-homotopy groups for j ≠ k. Using these results, we calculate the subgroup 𝓔dim#(X) of 𝓔(X) in which all elements induce the identity homomorphism up to (n + 2)-homotopy groups of X.

REMARKS ON DIGITAL HOMOTOPY EQUIVALENCE

  • Han, Sang-Eon
    • Honam Mathematical Journal
    • /
    • v.29 no.1
    • /
    • pp.101-118
    • /
    • 2007
  • The notions of digital k-homotopy equivalence and digital ($k_0,k_1$)-homotopy equivalence were developed in [13, 16]. By the use of the digital k-homotopy equivalence, we can investigate digital k-homotopy equivalent properties of Cartesian products constructed by the minimal simple closed 4- and 8-curves in $\mathbf{Z}^2$.

HOMOTOPY FIXED POINT SET $FOR \rho-COMPACT$ TORAL GROUP

  • Lee, Hyang-Sook
    • Bulletin of the Korean Mathematical Society
    • /
    • v.38 no.1
    • /
    • pp.143-148
    • /
    • 2001
  • First, we show the finiteness property of the homotopy fixed point set of p-discrete toral group. Let $G_\infty$ be a p-discrete toral group and X be a finite complex with an action of $G_\infty such that X^K$ is nilpotent for each finit p-subgroup K of $G_\infty$. Assume X is $F_\rho-complete$. Then X(sup)hG$\infty$ is F(sub)p-finite. Using this result, we give the condition so that X$^{hG}$ is $F_\rho-finite for \rho-compact$ toral group G.

  • PDF

EQUIVARIANT HOMOTOPY EQUIVALENCES AND A FORGETFUL MAP

  • Tsukiyama, Kouzou
    • Bulletin of the Korean Mathematical Society
    • /
    • v.36 no.4
    • /
    • pp.649-654
    • /
    • 1999
  • We consider the forgetful map from the group of equivariant self equivalences to the group of non-equivariant self equivalences. A sufficient condition for this forgetful map being a monomorphism is obtained. Several examples are given.

  • PDF

HOMOTOPY TYPE OF A 2-CATEGORY

  • Song, Yongjin
    • Korean Journal of Mathematics
    • /
    • v.18 no.2
    • /
    • pp.175-183
    • /
    • 2010
  • The classical group completion theorem states that under a certain condition the homology of ${\Omega}BM$ is computed by inverting ${\pi}_0M$ in the homology of M. McDuff and Segal extended this theorem in terms of homology fibration. Recently, more general group completion theorem for simplicial spaces was developed. In this paper, we construct a symmetric monoidal 2-category ${\mathcal{A}}$. The 1-morphisms of ${\mathcal{A}}$ are generated by three atomic 2-dimensional CW-complexes and the set of 2-morphisms is given by the group of path components of the space of homotopy equivalences of 1-morphisms. The main part of the paper is to compute the homotopy type of the group completion of the classifying space of ${\mathcal{A}}$, which is shown to be homotopy equivalent to ${\mathbb{Z}}{\times}BAut^+_{\infty}$.

CERTAIN SUBGROUPS OF SELF-HOMOTOPY EQUIVALENCES OF THE WEDGE OF TWO MOORE SPACES

  • Jeong, Myung-Hwa
    • Communications of the Korean Mathematical Society
    • /
    • v.25 no.1
    • /
    • pp.111-117
    • /
    • 2010
  • For a based, 1-connected, finite CW-complex X, we denote by $\varepsilon(X)$ the group of homotopy classes of self-homotopy equivalences of X and by $\varepsilon_#\;^{dim+r}(X)$ the subgroup of homotopy classes which induce the identity on the homotopy groups of X in dimensions $\leq$ dim X+r. In this paper, we calculate the subgroups $\varepsilon_#\;^{dim+r}(X)$ when X is a wedge of two Moore spaces determined by cyclic groups and in consecutive dimensions.

THE GROUPS OF SELF PAIR HOMOTOPY EQUIVALENCES

  • Lee, Kee-Young
    • Journal of the Korean Mathematical Society
    • /
    • v.43 no.3
    • /
    • pp.491-506
    • /
    • 2006
  • In this paper, we extend the concept of the group ${\varepsilon}(X)$ of self homotopy equivalences of a space X to that of an object in the category of pairs. Mainly, we study the group ${\varepsilon}(X,\;A)$ of pair homotopy equivalences from a CW-pair (X, A) to itself which is the special case of the extended concept. For a CW-pair (X, A), we find an exact sequence $1\;{\to}\;G\;{\to}\;{\varepsilon}(X,\;A)\;{to}\;{\varepsilon}(A)$ where G is a subgroup of ${\varepsilon}(X,\;A)$. Especially, for CW homotopy associative and inversive H-spaces X and Y, we obtain a split short exact sequence $1\;{\to}\;{\varepsilon}(X)\;{\to}\;{\varepsilon}(X{\times}Y,Y)\;{\to}\;{\varepsilon}(Y)\;{\to}\;1$ provided the two sets $[X{\wedge}Y,\;X{\times}Y]$ and [X, Y] are trivial.

HOMOTOPY FIXED POINT SET OF THE HOMOTOPY FIBRE

  • Lee, Hyang-Sook
    • Bulletin of the Korean Mathematical Society
    • /
    • v.36 no.4
    • /
    • pp.755-762
    • /
    • 1999
  • Let X be a p-compace groyp, Y -> X bd a p-compact-subgroup of X and G -> X be a p-compact toral subgroup of X with $(X/Y)^{hG} \neq 0$. In this paper we show that the homotopy fixed point set of the homotopy fibre $(X/Y)^{hG}$ is $F_p$-finite.

  • PDF