• 제목/요약/키워드: Groundwater-surface water interaction

Search Result 72, Processing Time 0.039 seconds

Seasonal Variation of Surface Water Quality in a Catchment Contaminated by $NO_3-N$ (질산성 질소로 오염된 소유역 하천 수질의 계절 변화)

  • Kim Youn-Tae;Woo Nam-Chil;Lee Kwang-Sik;Song Yun-Goo
    • Journal of Soil and Groundwater Environment
    • /
    • v.10 no.2
    • /
    • pp.20-27
    • /
    • 2005
  • The seasonal variation of water quality was studied in the Hwabongcheon. It runs though a small catchment where shallow groundwater was contaminated with $NO_3-N$ by intensive livestock facilities. A direct inflow of animal waste and incoming of contaminated groundwater affected its water quality. In the dry season, an important factor of water quality in the Hwabongcheon was direct inflow of animal waste. In the wet season, concentrations of $NO_3-N$ in the Hwabongcheon were elevated in spite of being diluted by precipitation. It could be explained by the effect of increased incoming of contaminated groundwater and showed by oxygen and hydrogen isotope values. $NO_3-N$ concentration in the Cheongmicheon was lower than that in the Hwabongcheon, so it increased next a junction. This effect was intense in wet season because $NO_3-N$ concentration in the Hwabongcheon was high.

Assessing the Impact of Climate Change on Water Resources: Waimea Plains, New Zealand Case Example

  • Zemansky, Gil;Hong, Yoon-Seeok Timothy;Rose, Jennifer;Song, Sung-Ho;Thomas, Joseph
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.18-18
    • /
    • 2011
  • Climate change is impacting and will increasingly impact both the quantity and quality of the world's water resources in a variety of ways. In some areas warming climate results in increased rainfall, surface runoff, and groundwater recharge while in others there may be declines in all of these. Water quality is described by a number of variables. Some are directly impacted by climate change. Temperature is an obvious example. Notably, increased atmospheric concentrations of $CO_2$ triggering climate change increase the $CO_2$ dissolving into water. This has manifold consequences including decreased pH and increased alkalinity, with resultant increases in dissolved concentrations of the minerals in geologic materials contacted by such water. Climate change is also expected to increase the number and intensity of extreme climate events, with related hydrologic changes. A simple framework has been developed in New Zealand for assessing and predicting climate change impacts on water resources. Assessment is largely based on trend analysis of historic data using the non-parametric Mann-Kendall method. Trend analysis requires long-term, regular monitoring data for both climate and hydrologic variables. Data quality is of primary importance and data gaps must be avoided. Quantitative prediction of climate change impacts on the quantity of water resources can be accomplished by computer modelling. This requires the serial coupling of various models. For example, regional downscaling of results from a world-wide general circulation model (GCM) can be used to forecast temperatures and precipitation for various emissions scenarios in specific catchments. Mechanistic or artificial intelligence modelling can then be used with these inputs to simulate climate change impacts over time, such as changes in streamflow, groundwater-surface water interactions, and changes in groundwater levels. The Waimea Plains catchment in New Zealand was selected for a test application of these assessment and prediction methods. This catchment is predicted to undergo relatively minor impacts due to climate change. All available climate and hydrologic databases were obtained and analyzed. These included climate (temperature, precipitation, solar radiation and sunshine hours, evapotranspiration, humidity, and cloud cover) and hydrologic (streamflow and quality and groundwater levels and quality) records. Results varied but there were indications of atmospheric temperature increasing, rainfall decreasing, streamflow decreasing, and groundwater level decreasing trends. Artificial intelligence modelling was applied to predict water usage, rainfall recharge of groundwater, and upstream flow for two regionally downscaled climate change scenarios (A1B and A2). The AI methods used were multi-layer perceptron (MLP) with extended Kalman filtering (EKF), genetic programming (GP), and a dynamic neuro-fuzzy local modelling system (DNFLMS), respectively. These were then used as inputs to a mechanistic groundwater flow-surface water interaction model (MODFLOW). A DNFLMS was also used to simulate downstream flow and groundwater levels for comparison with MODFLOW outputs. MODFLOW and DNFLMS outputs were consistent. They indicated declines in streamflow on the order of 21 to 23% for MODFLOW and DNFLMS (A1B scenario), respectively, and 27% in both cases for the A2 scenario under severe drought conditions by 2058-2059, with little if any change in groundwater levels.

  • PDF

The Development of Fully Coupled SWAT-MODFLOW Model (II) Evaluation of Model (완전 연동형 SWAT-MODFLOW 결합모형 (II) 모형의 평가)

  • Kim, Nam-Won;Chung, Il-Moon;Won, Yoo-Seung
    • Journal of Korea Water Resources Association
    • /
    • v.37 no.6
    • /
    • pp.509-515
    • /
    • 2004
  • In this study, comprehensive evaluation on the fully coupled SWAT-MODFLOW model is performed. Since combined model can consider the spatially varied daily recharge rate, groundwater modeling would be greatly enhanced. Also, combined model has been able to generate the distribution of groundwater heads with time, surface-subsurface flow modeling would be greatly advanced. River-aquifer interaction is well established in the combined model considering two-way interactions. Consequently, the reliability of groundwater discharge and total runoff of watershed would be greatly enhanced when combined model is used.

Geochemistuy of the Borehole Groundwater from Volcanic Rocks in the Northeastern Part of Yeosu Area (여수 북동부 화산암 지역 시추공 지하수의 지화학 특성)

  • 고용권;김경수;배대석;김천수;한경원
    • Economic and Environmental Geology
    • /
    • v.34 no.3
    • /
    • pp.255-269
    • /
    • 2001
  • The geochemical studies on groundwater in the borehole, which is straddled by multi-packer (MP) system, were carried out from a volcanic terrain in the Yeosu area. The pH of groundwater collected from selected sections in the MP-installed borehole is much higher (up to 9.6) than that of the borehole groundwater (7.0-7.9) collected using conventional pumping technique. Hydrochemistry shows that the groundwater has a typical chemical change with increasing sampling depth, suggesting that the groundwater is evolved through water-rock interaction along the fracture-controlled flow paths. The groundwater from the deeper part (138-175 m below the surface) in borehole KI is characterized by the Ca-C11 type with high Ca (up to 160 mg/L) and Cl (up to 293 mg/L) contents, probably reflecting seawater intrusion. The groundwater also has high sodium and sulfate contents compared to the waters from other boreholes. These observed groundwater chemistry is explained by the cation exchange, sulfide oxidation, and mixing process with seawater along the flow path.

  • PDF

Evaluation of Groundwater Flow for the Kap-cheon Basin (갑천 유역의 지하수 유동 평가)

  • Hong, Sung-Hun;Kim, Jeong-Kon
    • Journal of Korea Water Resources Association
    • /
    • v.40 no.6 s.179
    • /
    • pp.431-446
    • /
    • 2007
  • Groundwater flow in a basin is greatly affected by many hydrogeological and hydrological characteristics of the basin. A groundwater flow model for the Kap-cheon basin ($area=648.3km^2$) in the Geum river basin was established using MODFLOW by fully considering major features obtained from observed data of 438 wells and 24 streams. Furthermore, spatial groundwater recharge distribution was estimated employing accurately calibrated watershed model developed using SWAT, a physically semi-distributed hydrological model. Model calibration using observed groundwater head data at 86 observation wells yielded the deterministic coefficient of 0.99 and the water budget discrepancy of 0.57%, indicating that the model well represented the regional groundwater flow in the Kap-cheon basin. Model simulation results showed that groundwater flow in the basin was strongly influenced by such factors as topological features, aquifer characteristics and streams. The streams in mountainous areas were found to alternate gaining and losing steams, while the streams in the vicinity of the mid-stream and down-stream, especially near the junction of Kap-cheon and Yudeong-cheon, areas were mostly appeared as gaining streams. Analysis of water budget showed that streams in mountainous areas except for the mid-stream and up-stream of Yudeong-cheon were mostly fed by groundwater recharge while the streams in the mid and down-stream areas were supplied from groundwater inflows from adjacent sub-basins. Hence, it was concluded that the interactions between surface water-groundwater in the Kap-cheon basin would be strongly inter-connected with not only streams but also groundwater flow system itself.

An Integrated Surface Water-Groundwater Modeling by Using Fully Combined SWAT MODFLOW Model (완전연동형 SWAT-MODFLOW 모형을 이용한 지표수-지하수 통합 유출모의)

  • Kim, Nam Won;Chung, Il Moon;Won, Yoo Seung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.5B
    • /
    • pp.481-488
    • /
    • 2006
  • This paper suggests a novel approach of integrating the quasi-distributed watershed model SWAT with the fully-distributed groundwater model MODFLOW. Since the SWAT model has semi distributed features, its groundwater components hardly considers distributed parameters such as hydraulic conductivity and storage coefficient. Generating a detailed representation of groundwater recharge, head distribution and pumping rate is equally difficult. To solve these problems, the method of exchanging the characteristics of the hydrologic response units (HRUs) in SWAT with cells in MODFLOW by fully combined manner is proposed. The linkage is completed by considering the interaction between the stream network and the aquifer to reflect boundary flow. This approach is provisionally applied to Gyungancheon basin in Korea. The application demonstrates a combined model which enables an interaction between saturated zones and channel reaches. This interaction plays an essential role in the runoff generation in the Gyungancheon basin. The comprehensive results show a wide applicability of the model which represents the temporal-spatial groundwater head distribution and recharge.

Geochemical Modeling of Groundwater in Granitic Terrain: the Yeongcheon Area (영천 화강암지역 지하수의 지화학적 모델링)

  • Koh, Yong-Kwon;Kim, Chun-Soo;Bae, Dae-Seok;Yun, Seong-Taek
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.5 no.4
    • /
    • pp.192-202
    • /
    • 1998
  • We investigated the geochemistry and environmental isotopes of granite-bedrock groundwater in the Yeongcheon diversion tunnel which is located about 300 m below the land surface. The hydrochemistry of groundwaters belongs to the Ca-HCO$_3$type, and is controlled by flow systems and water-rock interaction in the flow conduits (fractures). The deuterium and oxygen-18 data are clustered along the meteoric water line, indicating that the groundwater are commonly of meteoric water origin and are not affected by secondary isotope effects such as evaporation and isotope exchange. Tritium data show that the groundwaters were mostly recharged before pre-thermonuclear period and have been mixed with younger surface water flowing down rapidly into the tunnel along fractured zones. Based on the mass balance and reaction simulation approaches, using both the hydrochemistry of groundwater and the secondary mineralogy of fracture-filling materials, we have modeled the low-temperature hydrogeochemical evolution of groundwater in the area. The results of geochemical simulation show that the concentrations of Ca$\^$2+/, Na$\^$+/ and HCO$_3$and pH of waters increase progressively owing to the dissolution of reactive minerals in flow paths. The concentrations of Mg$\^$2+/ and K$\^$+/ frist increase with the dissolution, but later decrease when montmorillonite and illitic material are precipitated respectively. The continuous adding of reactive minerals, namely the progressively larger degrees of water/rock interaction, causes the formation of secondary minerals with the following sequence: first hematite, then gibbsite, then kaolinite, then montmorillonite, then illtic material, and finally microcline. During the simulation all the gibbsite is consumed, kaolinite precipitates and then the continuous reaction converts the kaolinite to montmorillonite and illitic material. The reaction simulation results agree well with the observed, water chemistry and secondary mineralogy, indicating the successful applicability of this simulation technique to delineate the complex hydrogeochemistry of bedrock groundwaters.

  • PDF

Partial Correlation between Hydrological, Geochemical and Microbiological Processes in Groundwater-stream Water Mixing Zone in a Rural Area (농촌지역 지하수-지표수 혼합구간에서 수리, 지구화학 및 생물학적 기작 사이의 편상관분석)

  • Kim, Heejung;Lee, Jin-Yong;Lee, Kang-Kun
    • Journal of Wetlands Research
    • /
    • v.14 no.4
    • /
    • pp.489-502
    • /
    • 2012
  • Biogeochemical processes in groundwater-stream water mixing zone are recently of great interest because biodegradation and natural attenuation of aquatic contaminants may occur through the processes. The objectives of this study are to investigate the hydrologic and biogeochemical processes at the groundwater-stream water mixing zone through which surface water-driven nitrate may be naturally attenuated, and to examine the effect of the vertical flow exchange flux on biogeochemical processes using correlation analysis. To examine the direction of vertical water flow in the zone, vertical hydraulic gradients were measured at several depths using mini-piezometers. Microbial populations in soil samples of the zone were also analyzed by means of the polymerase chain reaction (PCR) and Cloning methods. In addition, partial correlations among vertical flow exchange, nitrate concentration and microbial activity was investigated to examine their mutual interaction. The results showed the significant interaction among the three parameters, resulting in natural attenuation of nitrate. This study showed an example of the biogeochemical fuction of groundwater-stream water mixing zone, which can be predictable from the examination of the interaction among microbial activities, concentration of contamination and vertical flow exchange flux. temperature show a significant difference in adjacent streambed, Also, the results shows that distribution of temperature was more affected by groundwater direction than intensity of flux.

Integrated Surface-Groundwater Hydrologic Analysis for Evaluating Effectiveness of Groundwater Dam in Ssangcheon Watershed (쌍천 지하댐의 효용성 평가를 위한 지표수-지하수 통합 수문해석)

  • Kim, Nam-Won;Na, Han-Na;Chung, Il-Moon
    • Economic and Environmental Geology
    • /
    • v.44 no.6
    • /
    • pp.525-532
    • /
    • 2011
  • In this study, the usefulness of underground dam as a means for the sustainable development of groundwater, and its performance in the management of groundwater resources were analyzed. The fully integrated SWAT-MODFLOW was applied to the Ssangcheon watershed in Korea to evaluate the effectiveness of groundwater dam construction. After construction, the groundwater level raised in the upstream area of groundwater dam while lowered in the downstream area. Also, it is shown that the exchange rate of river-aquifer interactions increased in the upper area of the dam. Since the storage capacity of the aquifer largely increased in the upper area of the dam, the exploitable groundwater could be greatly increased as much. This study demonstrated that a groundwater dam was a very useful measure to increase the available storativity of groundwater aquifers. It also represented that the combined analysis using SWAT-MODFLOW was helpful for the design and opeation of groundwater dam in the Ssangcheon watershed.

Enhancement of Coupling between Soil Water and Groundwater in Integrated SWAT-MODFLOW Model (SWAT-MODFLOW 결합모형의 토양수-지하수 연결성 개선)

  • Kim, Nam-Won;Lee, Jeong-Woo;Chung, Il-Moon;Won, Yoo-Seung
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.1
    • /
    • pp.9-19
    • /
    • 2009
  • This study presents the effects of temporally varied groundwater table on hydrological components such as surface runoff, evapotranspiration, and soil water content. To this end, the SWAT-MODFLOW model in which the groundwater module of SWAT is replaced with MODFLOW model has been used with a modification to enhance the coupling between the water content in soil profile and the groundwater in shallow aquifer. The variable soil layer construction technique (VSLT) is developed in the present work to represent the direct interaction of soil water and groundwater more realistically, and then the VSLT is incorporated into SWAT-MODFLOW model. In VSLT, when the simulated groundwater table rises within the soil zone, the soil layers below the water table is regarded as a portion of the shallow aquifer, so that those layers are excluded from the initially defined soil zone and are governed by the MODFLOW. From the simulation tests for the Musim river basin, the improved SWAT-MODFLOW model with VSLT is found to correctly evaluate the spatial distributions of overland flow, soil moisture, evapotranspiration according to the groundwater table variation.