• Title/Summary/Keyword: Groundwater remediation

Search Result 536, Processing Time 0.019 seconds

Remediation for Hydrophobic Organic Compound Contaminated Soils by Surfactant Solution (계면활성제 용액을 이용한 소수성 유기화합물로 오염된 토양의 정화)

  • 윤현석;박민균;권오정;박준범
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.03a
    • /
    • pp.543-550
    • /
    • 1999
  • Hazardous substances produced from industrial sectors have caused serious contamination of soils and groundwater. The hydrophobic organic compounds in the subsurface are hard to be decomposed, and as they soil on the soil or last as a NAPL they might contaminate the groundwater for a long time. Although we recognize the danger of contaminated subsurface, very little was known about the effective remediation technique. This paper focuses on the remediation of the p-Cresol which contaminated subsurface by applying the surfactant-enhanced description technique. Sorption characteristics of soils and organic compounds are studied, and the applications of surfactant solution are studied for effective rededication. The results from this study could be used as some data for surfactant-enhanced rededication. The flexible-wall permeameter tests are performed in which in-situ remediation is simulated. Results show that triton X-100 at 2% solution disrobes p-Cresol 1.7 times as much as water description in the flexible-wall permeameter tests.

  • PDF

Study on Reuse and Recycling of Soil Washing Wastewater (오염토양 제염폐수 재사용 및 재생 연구)

  • 김계남;정기정;이동규
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2001.04a
    • /
    • pp.226-229
    • /
    • 2001
  • For volume reduction of the wastewater generated on washing the soil contaminated with cobalt, recycling and reuse experiments of the wastewater were executed. Also. the soil remediation efficiency by repetitive washing with fresh citric acid was analyzed. The soil around TRIGA was sampled for the experiment. Results of recycling experiment by replacement-precipitation method were as follows. The remediation efficiency of 1st recycling wastewater was 97% and that of 2nd recycling wastewater was 94%. Also, To obtain remediation efficiency over than 90%, the 5th repetitive washing with fresh citric acid was needed.

  • PDF

Electrokinetic Soil Flushing with Nonionic Surfactant for Removal of Phenanthrene

  • 이유진;박지연;김상준;기대정;양지원
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.09a
    • /
    • pp.356-359
    • /
    • 2003
  • Polycyclic aromatic hydrocarbons (PAHs) are representative hydrophobic organic carbons (HOCs). Surfactant-enhanced electrokinetic (EK) remediation is an innovative in-situ technology that can effectively remove HOCs from low-permeability soils. In this study, the electrokinetic remediation using Tergitol 15-S-12, a nonionic surfactant, was conducted for the removal of phenanthrene from kaolinite. Tergitol 15-S-12 was used at concentrations of 1.5, 2.0, 2.5 and 7.5 g/L to enhance the solubility of phenanthrene. When the surfactant solution was applied to EK system, high electrical potential gradient was maintained and the amount of electroosmotic flow decreased. Removal efficiency of phenanthrene was proportional to the concentration of Tergitol 15-S-12 because the solubility and mobility of phenanthrene was enhanced by surfactant micelle. Therefore, the suitable concentration of nonionic surfactant Tergitol 15-S-12 is expected to improve the removal efficiency of PAHs in EK remediation.

  • PDF