• Title/Summary/Keyword: Groundwater recharge rate

Search Result 109, Processing Time 0.02 seconds

Minimum Entropy Deconvolution을 이용한 지하수 상대 재충진양의 시계열 추정법

  • 김태희;이강근
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.09a
    • /
    • pp.574-578
    • /
    • 2003
  • There are so many methods to estimate the groundwater recharge. These methods can be categorized into four groups. First groupis related to the water balance analysis, second group is concerned with baseflow/springflow recession, and third group is interested in some types of tracers; environmental tracers and/or temperature profile. The limitation of these types of methods is that the estimated results of recharge are presented in the form of an average over some time period. Forth group has a little different approach. They use the time series data of hydraulic head and specific yield evaluated from field test, and the results of estimation are described in the sequential form. But their approach has a serious problem. The estimated results in forth typeof methods are generally underestimated because they cannot consider the discharge phase of water table fluctuation coupled with the recharge phase. Ketchum el. at. (2000) proposed calibrated method, considering recharge- and discharge-coupled water table fluctuation. But the dischargeis considered just as the areal average with discharge rate. On the other hand, there are many methods to estimate the source wavelet with observed data set in geophysics/signal processing and geophysical methods are rarely applied to the estimation of groundwater recharge. The purpose this study is the evaluation of the applicability of one of the geophysical method in the estimation of sequential recharge rate. The applied geophysical method is called minimum entropy deconvolution (MED). For this purpose, numerical modeling with linearized Boussinesq equation was applied. Using the synthesized hydraulic head through the numerical modeling, the relative sequenceof recharge is calculated inversely. Estimated results are very concordant with the applied recharge sequence. Cross-correlations between applied recharge sequence and the estimated results are above 0.985 in all study cases. Through the numerical test, the availability of MED in the estimation of the recharge sequence to groundwater was investigated

  • PDF

Estimation of Distributed Groundwater Recharge in Jangseong District by using Integrated Hydrologic Model (통합수문모형을 이용한 장성지역의 분포형 지하수 함양량 추정)

  • Chung, Il-Moon;Park, Seunghyuk;Lee, Jeong Eun;Kim, Min Gyu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.38 no.4
    • /
    • pp.517-526
    • /
    • 2018
  • As groundwater recharge shows the heterogeneity in space and time due to land use and soil types, estimating daily recharge by integrated hydrologic analysis is needed. In this work, the SWAT-MODFLOW model was applied to compute daily based groundwater recharge in Jangseong region. The accuracy of the model was evaluated by comparing the observed and calculated values of the unsteady groundwater flow levels after calibrating the observed and calculated flow rates of the stream for a hydrological analysis. The estimated hydrologic components showed a strong correlation with each other and significant spatial variations regarding the groundwater recharge rate in accordance with the heterogeneous watershed characteristics such as subbasin slope, land use, and soil type. Overall, it was concluded that the coupled hydrologic models were capable of simulating the spatial variation with respect to the hydrologic component process in surface water and groundwater. The average recharge rate was estimated at approximately 20.8%.

Estimating Exploitable Groundwater as a Function of Precipitation Using a Distributed Hydrologic Model and Frequency Analysis (분포형 수문모형과 빈도해석을 이용한 강수량별 지하수 개발가능량 산정)

  • Kim, Minsoo;Jeong, Gyocheol;Lee, Jeong Eun;Kim, Min-Gyu
    • The Journal of Engineering Geology
    • /
    • v.30 no.3
    • /
    • pp.253-268
    • /
    • 2020
  • In this study, recharge rates are estimated using SWAT-K (a distributed hydrological model). The validity of the estimated recharge rates were evaluated by employing the baseflow separation method based on observed hydrological data. The exploitable groundwater is typically determined as the 10-year drought frequency recharge rate that is calculated by average recharge ratio multiplied by 10-year drought frequency precipitation. In practice, however, recharge rates typically decrease in line with precipitation; therefore, exploitable groundwater could be overestimated when average recharge rates are used without considering precipitation. To resolve this overestimation, exploitable groundwater was calculated by re-estimating recharge rates that consider precipitation intensity. By applying this method to the Uiwang, Gwacheon, and Seongnam sub-basins, the exploitable groundwater decreased by 55.5~77.6%, compared with recharge rates obtained using the existing method.

Artifical Groundwater Recharge Using Underground Piping Method

  • Ahn, Sang-Jin;Lee, Jong-Hyong
    • Korean Journal of Hydrosciences
    • /
    • v.3
    • /
    • pp.11-29
    • /
    • 1992
  • Recently, rapid industrialization, urbanization and higher living standards accelerate to increase groundwater consumption resulting in continuously dropping groundwater elevations. To maintain enough groundwater volume without dropping groundwater elevations, the proper groundwater rechatge is necessary. The groundwater rechatge can be classified into two categories which are natural rechatge and artiticial rechatge. Even though the natural rechatge through by dired infiltration from the rainfall is desirable, the artificial groundwater rechatge is necessaty when the increment of groundwater consumption exceeds natural recharge rate. Well method and scattering method are utilized as artificial rechatging method, a severe disadvantage, which is the reduction of the void of soil surface, is indicated in the well method. Recently, the underground piping method, which is a scattering method, is receiving increasing attention as a proper recharging method. The method is indirectly to supply water to the underground using an underground piping system. Therefore, the void of soil surface is not severely reduced and better infiltration rate can be achieved. In this paper, the artificial groundwater rechatge using underground piping method is investigated through experiments and numerical analysis. The influence of the groundwater by underground piping method is evaluated through comparing recharging heights. Good agreements between experiments and numerical analysis are obtained and the artificial groundwater recharge by underground piping method is well tested and verified.

  • PDF

GROUNDWATER RECHARGE ESTIMATION USING ARCGIS-CHLORIDE MASS BALANCE APPROACH

  • Lee Ju Young;Krishinamurshy Ganeshi
    • Water Engineering Research
    • /
    • v.6 no.1
    • /
    • pp.31-38
    • /
    • 2005
  • Groundwater recharge is defined in an addition of water to groundwater reservoir. Recently, many people have been moving to the Edwards aquifer and urban and agricultural industry have been expending. Hydrologists and water planning managers concern about insufficient groundwater amounts and irrigation water price variability. In this paper, I focus on estimates of local recharge volumes and quantify preferential flow through GIS technique. Chloride Mass Balance (CMB) and hydrochemical components have been widely applied to recharge rate and evaluate flow paths. The CMB method is based on relationship between wet-dry chloride deposition data and Rainfall data. These data are manipulated using ArcGIS. Especially, hydrochemical concentration distribution is good index for groundwater residence times or flow paths such as $[Mg^{2+}]/[Ca^{2+}],[Cl]$ and log$([Ca^{2+}]+[Mg^{2+}])/[Na^+]$. Well information such as hydrological-hydrochemical data are imported into ArcGIS and manipulated by interpolation techniques. For each potentiometric surface and water quality, point data are converted to spatial data through each Kriging and Inverse Distance Weighted (IDW) techniques.

  • PDF

Study of Groundwater Recharge Rate Change by Using Groundwater Level and GRACE Data in Korea (지하수위와 GRACE 자료를 이용한 국내 지하수 함양량 변화 연구)

  • Jeon, Hang-Tak;Hamm, Se-Yeong;Jo, Young-Heon;Kim, Jinsoo;Park, Soyoung;Cheong, Jae-Yeol
    • The Journal of Engineering Geology
    • /
    • v.29 no.3
    • /
    • pp.265-277
    • /
    • 2019
  • Changes in the amount, intensity, frequency, and type of precipitation, in conjunction with global warming and climate change, critically impact groundwater recharge and associated groundwater level fluctuations. Monthly gravity levels by the Gravity Recovery and Climate Experiment (GRACE) are acquired to monitor total water storage changes at regional and global scales. However, there are inherent difficulties in quantitatively relating the GRACE observations to groundwater level data due to the difficulties in spatially representing groundwater levels. Here three local interpolation methods (kriging, inverse distance weighted, and natural neighbor) were implemented to estimate the areal distribution of groundwater recharge changes in South Korea during the 2002-2016 period. The interpolated monthly groundwater recharge changes are compared with the GRACE-derived groundwater storage changes. There is a weak decrease in the groundwater recharge changes over time in both the GRACE observations and groundwater measurements, with the rate of groundwater recharge change exhibiting mean and median values of -0.01 and -0.02 cm/month, respectively.

Method of Estimating Groundwater Recharge with Spatial-Temporal Variability (시공간적 변동성을 고려한 지하수 함양량의 추정 방안)

  • Kim, Nam-Won;Chung, Il-Moon;Won, Yoo-Seung
    • Journal of Korea Water Resources Association
    • /
    • v.38 no.7 s.156
    • /
    • pp.517-526
    • /
    • 2005
  • In Korea, the methods of estimating groundwater recharge can categorized into two groups. One is baseflow separation method by means of groundurater recession curve, the other is water level fluctuation method by using the data from groundwater monitoring wells. Baseflow separation method is based on annual recharge and lumped concept, and water-table fluctuation method is largely dependent on monitoring wells rather than water budget in watershed. However, groundwater recharge rate shows the spatial-temporal variability due to climatic condition, land use and hydrogeological heterogeneity, these methods have various limits to deal with these characteristics. For this purpose, the method of estimating daily recharge rate with spatial variability based on distributed rainfall-runoff model is suggested in this study. Instead of representative recharge rate of large watershed, the subdivided recharge rate with heterogeneous characteristics can be computed in daily base. The estimated daily recharge rate is an advanced quantity reflecting the heterogeneity of hydrogeology, climatic condition, land use as well as physical behaviour of water in soil layers. Therefore, the newly suggested method could be expected to enhance existing methods.

Preliminary Assessment of Groundwater Artificial Recharge Effect Using a Numerical Model at a Small Basin (수치모델을 이용한 소분지에서의 지하수 인공함양 효과 예비 평가)

  • Choi, Myoung-Rak;Cha, Jang-Hwan;Kim, Gyoo-Bum
    • The Journal of Engineering Geology
    • /
    • v.30 no.3
    • /
    • pp.269-278
    • /
    • 2020
  • In this study, the effects of groundwater artificial recharge through vertical wells in the upper small basin are preliminarily evaluated by using field injection test and a 3-D numerical model. The injection rate per well in a model is set to 20, 37.5, 60, and 75 ㎥/day based on the results of field injection test, groundwater levels, and hydraulic conductivities estimated from particle size analysis, and a numerical model using MODFLOW is conducted for 28 cases, which have diverse injection intervals, in order to estimated the changes of groundwater level and water balance after injection. Groundwater level after injection does not show a linear relationship with the injection rate per well, and the cumulative effect of artificial recharge decreases and the timing of maximum water level rise is shortened as the injection interval becomes longer. In four cases of continuous injection with total injection rate of 1,200 ㎥, it is revealed that the recharge effect is analyzed as 36.5~65.3% of the original injection rate. However, it will be more effective if the artificial recharge system combined with underground barrier is introduced for the longer pumping during a long and severe drought. Additionally, it will be possible to build a stable artificial recharge system by an establishment of efficient scenario from recharge to pumping as well as an optimization of recharge facilities.

도시화에 따른 갑천유역의 지하 수문 특성 변화 분석

  • Kim Jeong-Gon;Son Gyeong-Ho;Go Ik-Hwan
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2006.04a
    • /
    • pp.64-67
    • /
    • 2006
  • The main purpose of this research was to investigate the effects of urbanization on the groundwater system in the Gap river basin, a sub-basin of the Geum river basin. In this analysis, we constructed a water cycle analysis system using SWAT. Then, changes in soil moisture and recharge rate due to land-use changes were investigated using different land-use data estimated in 1975 and 2000. Simulation results were analyzed for both draught (2001) and flood (2003) years to take into account different hydrologic conditions. It was shown that recharge rate in the most urbanized area (31% change) was reduced by 17% for both periods due to urbanization. The results also indicated that soil moisture decrease due to urbanization was more sensitive in the drought year (2001) than in the flood year (2003), We expect that the results of this research can contribute to providing useful information for managing urban rivers considering river restoration and flood control.

  • PDF

A Note on Estimating and Managing Groundwater Reserves (지하수 부존량 평가와 관리에 대한 소고)

  • Lee, Byung Sun;Park, Jong Hwan;Myoung, Wooho;Son, Joohyeong;Lee, Sanghaw;Shim, Gyuseong;Song, Sung-Ho
    • Journal of Soil and Groundwater Environment
    • /
    • v.23 no.6
    • /
    • pp.28-36
    • /
    • 2018
  • This study was conducted to estimate groundwater reserves within a designated depth. Three methods were applied to one representative county in southern Gyeongsang province, South Korea, to estimate the groundwater reserves in the aquifers. Estimated amounts of groundwater reserves in the region ranged from $20.2{\times}10^9m^3$ to $68.7{\times}10^9m^3$ (average $37.9{\times}10^9m^3$). Groundwater recharge obtained with a recharge ratio of 16.6% was $1.1{\times}10^9m^3/year$. Exploitable groundwater with an assumption of decadal-cycle minimal rainfall of 977.0 mm/year was approximated as 72% ($0.8{\times}10^9m^3/year$) of the total replenished water by recharge. The volume of recharge and exploitable water accounted for only 1.1% and 0.8% of groundwater reserves, respectively, which indicates substantial capacity of the reservoir to supply groundwater in an event of unexpected droughts. Nonetheless, each groundwater well should strictly comply with its allocated pumping rate to avoid alluvial groundwater depletion.