• Title/Summary/Keyword: Groundwater flows

Search Result 97, Processing Time 0.03 seconds

3-D Dynamic groundwater-river interaction modeling incorporating climate variability and future water demand

  • Hong, Yoon-Seok Timothy;Thomas, Joseph
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.67-74
    • /
    • 2008
  • The regional-scale transient groundwater-river interaction model is developed to gain a better understanding of the regional-scale relationships and interactions between groundwater and river system and quantify the residual river flow after groundwater abstraction from the aquifers with climate variability in the Waimea Plains, New Zealand. The effect of groundwater abstraction and climate variability on river flows is evaluated by calculating river flows at the downstream area for three different drought years (a 1 in 10 drought year, 1 in 20 drought year, and 1 in 24 drought year) and an average year with metered water abstraction data. The effect of future water demand (50 year projection) on river flows is also evaluated. A significant increase in the occurrence of zero flow, or very low flow of 100 L/sec at the downstream area is predicted due to large groundwater abstraction increase with climate variability. Modeling results shows the necessity of establishing dynamic cutback scenarios of water usage to users over the period of drought conditions considering different climate variability from current allocation limit to reduce the occurrence of low flow conditions at the downstream area.

  • PDF

Resistivity Exploration of Submarine Groundwater Discharge in Busan Area (부산지역의 해저용출수 전기비저항탐사)

  • Park, Jun-Kyu;Kim, Sung-Wook;Lee, Jin-Hyuk;Kim, In-Soo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.711-716
    • /
    • 2010
  • This study selected the promising area of submarine groundwater discharge(SGD) that flows into the sea following unconfined physical aquifer through the electrical resistivity survey of the land and sea. The submarine groundwater discharge(SGD) mostly flows into the sea following fracture zones, and the detection of the fault zone becomes the important guideline of groundwater discharge. Electrical sounding of the land assessed the groundwater flow and integration possibility according to the location of a fault that is a water path between underground reservoir and surface water as well as a rock fracture. In addition, the study conducted sea electrical resistivity to expand the area with high potential and selected the expected water potential groundwater area. The areas of the study were Busan and coastal areas, and for the terrain analysis, the candidates of the ground exploration were selected after analyzing lineaments that is expanded to coast direction.

  • PDF

A Multivariate Model Development for Strem Flow Generation

  • Jeong, Sang-Man
    • Korean Journal of Hydrosciences
    • /
    • v.3
    • /
    • pp.105-113
    • /
    • 1992
  • Various modeling approaches to study a long term behavior of streamflow or groundwater storage have been conducted. In this study, a Multivariate AR (1) Model has been applied to generate monthly flows of the one key station which has historical flows using monthly flows of the three subordinate stations. The Model performance was examined using statistical comparisons between the historical and generated monthly series such as mean, variance, skewness. Also, the correlation coefficients (lag-zero, and lag-one) between the two monthly flows were compared. The results showed that the modeled generated flows were statistically similar to the historical flows.

  • PDF

Effect of the Yeongcheon Dam Waterway Tunnel, Korea, on Local Groundwater Levels (영천댐 도수터널 주변지역 지하수위 영향 분석)

  • Gyu-Han Kim;Seong-Woo Moon;Yong-Seok Seo
    • The Journal of Engineering Geology
    • /
    • v.33 no.3
    • /
    • pp.461-474
    • /
    • 2023
  • The study area is located in Hyeonseo-myeon and Andeok-myeon of Cheongsong-gun, Korea around the Yeongcheon dam waterway tunnel, and in this paper, it is analyzed whether the groundwater level is recovered or not compared to groundwater level before waterway tunnel construction by measuring the groundwater level of 156 wells which were installed in areas near and away from the waterway tunnel. From September 2017 to August 2018, the groundwater level of the well was measured at least once a month, and as a result of groundwater level observation survey, the groundwater level of wells distributed in the directly affected zone by the waterway tunnel is relatively lower than that of the indirectly affected zone apart from the waterway tunnel. These results are estimated to be predominantly affected by the effect of waterway tunnel acting on geologic discontinuities rather than by terrain conditions, i.e. groundwater flows being leaked to the waterway tunnel through direct or indirect channels. Continuous monitoring and further investigation will be required to maintain groundwater facilities and preserve groundwater environments in the future.

강변여과수 개발부지 지하수의 수리지화학적 특성 -Preliminary results

  • 현승규;우남칠;신우식;함세영
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.09a
    • /
    • pp.579-582
    • /
    • 2003
  • This study is a part of the project to identify water-quality degradation mechanism due to Fe and Mn in the river-bank infiltration system in the Changwon city, Kyungsangnam-Do. Results of hydrogeochemical logging indicated that the matrix of the river bank affects groundwater quality, probably related with the hydraulic conductivities of the different layers of bank deposits. Electric conductivity logging data clearly show various layers of groundwater flows. Further studies are necessary to identify mechanisms of increasing dissolved oxygen contents with depths at some monitoring wells.

  • PDF

Effects of Irrigation Reservoirs and Groundwater Withdrawals on Streamflow for the Anseongcheon Upper Watershed (안성천 상류유역 하천유량에 미치는 농업용 저수지와 지하수 이용 영향 분석)

  • Lee, Jeongwoo;Kim, Nam Won;Chung, Il-Moon;Lee, Jeong Eun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.4
    • /
    • pp.835-844
    • /
    • 2015
  • Streamflow responses to irrigation reservoirs and groundwater withdrawals were simulated using the integrated surface-water and groundwater model, SWAT-MODFLOW for the upstream watershed of the Gongdo station located in the Anseong stream. The simulated results indicated that the irrigation water supply from the Gosam and the Geumkwang reservoirs has caused the decrease of 31.2%, 82.5% in drought flows below the reservoirs, respectively, against the natural flow condition. While, at the outlet of the study watershed, the effects of the irrigation reservoirs were insignificant due to the delayed return flows with the decrease of 5.7% in drought flow. Both of the irrigation reservoirs and groundwater withdrawals have reduced the drought flows by 19.2% at the Gongdo station.

Combined Effects of Groundwater Abstraction and Irrigation Reservoir on Streamflow (지하수 이용과 농업용 저수지가 하천유량에 미치는 복합 영향)

  • Kim, Nam Won;Lee, Jeongwoo;Chung, Il Moon;Lee, Min Ho
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.7
    • /
    • pp.719-733
    • /
    • 2013
  • In this study, a watershed-based surface-water and groundwater integrated model, SWAT-MODFLOW was used to evaluate streamflow depletion induced by groundwater withdrawals and irrigation reservoirs for the Juksan-cheon watershed in South Korea. The streamflow responses to groundwater pumping and irrigation reservoirs were simulated under several different scenarios. The scenarios were (1) current pumping well withdrawals with reservoirs; (2) current pumping well withdrawals without reservoirs; (3) no pumping well withdrawals with reservoirs; (4) no pumping well withdrawals without reservoirs (natural condition). The simulated results indicated that the effects of groundwater pumping on streamflow depletion are a little more significant than those of irrigation reservoirs. Particularly, the groundwater withdrawals with irrigation reservoirs at current status (scenario 1) has induced the decrease of more than 20% in drought flow against the natural condition (scenario 4) at the outlet of the watershed. The specific drought flows through the main stream of Juksan-cheon watershed were simulated in order to assess the irrigation effects on downstream flows. It was found out that the specific drought flows are increasing as the distance from the reservoir increases due to the accumulation of the return flows to stream.

Underground temperature survey for the study of shallow groundwater flow system

  • Okuyama Takehiko;Kuroda Seiichiro;Nakazato Hiroomi;Natsuka Isamu
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.690-694
    • /
    • 2003
  • Groundwater preferentially flows through sediment layers with high permeability such as colluvium. Its flow paths are called groundwater vein streams. An underground temperature survey is a method to locate vein streams by underground temperature anomalies associated with flowing groundwater. A groundwater flow system near an irrigation reservoir located in the upper part of a landslide block was surveyed with this method. After a geomembrane lining was installed in the reservoir, the total cross-sectional area of the vein streams in the aquifer decreased to as little as 0.35 times that before installation of the liner. A change in groundwater quality also indicated that the mixing of groundwater with leaked water from the reservoir stopped after installation of the lining.

  • PDF

Analyzing the Effect of Groundwater Dam Construction Using Groundwater Modeling (지하수 모델링을 통한 지하수댐 건설 효과 분석)

  • Kim, Ji-Wook;Lim, Kyung-Nam;Park, Hyun-Jin;Rhee, Bo-Kyoung
    • Journal of Soil and Groundwater Environment
    • /
    • v.18 no.3
    • /
    • pp.11-22
    • /
    • 2013
  • SEAWAT, a linked modeling program of Visual MODFLOW was used to analyze the change in groundwater levels and salinity related groundwater dam construction in Cheongsan island, Wando-Gun, Jeollanam-Do. The steady-state model results show the groundwater flow and salinity distribution of the studied area. The groundwater flows from north-west and south-east highlands into the river, located in the middle part of the basin, and is eventually discharged to the ocean. Part of the sea water infiltrates into the river; and through the estuary's alluvium aquifer, the sea water intrusion takes place spreading to about 830 m from the ocean. The transient model results show that after the groundwater dam construction, groundwater levels will rise to a maximum of 2.0 m upstream, and the groundwater storage will increase 21,000 after 10 years. Meanwhile 31% of the total area affected by sea water intrusion will decrease. To conclude, the groundwater dam is a very useful method for a secure water resource in preparation for drought and water shortages in the island regions.

Recharge mechanism using electromagnetic ground conductivity survey and tritium concentration analyses of groundwater in salt affected area, Northeast Thailand

  • Imaizumi Masayuki;Sukchan Somsaku;Ishida Satoshi;Tsuchihara Takeo;Ohonishi Ryouichi
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.344-351
    • /
    • 2003
  • Hydrogeological survey and geochemical analysis were carried out in Phra Yun area, Northeast Thailand, which is a typical salt-affected area for an understanding of hydrogeological groundwater behaviours. Geological survey reveals the presence of G1 and F1 faults. Electromagnetic ground conductivity prospecting shows that the high conductivity zones of 15 mS/cm or more are distributed at underground of the G1 and F1 faults where saline groundwater is discharged. The distribution patterns of tritium concentration show that high tritium concentration zones of groundwater were recharged from pond and river. On the assumption that the annual average tritium concentration of precipitation in Northeast Thailand is same as tritium concentration of precipitation in Tokyo and groundwater flows as piston flow, the age of recharging precipitation of groundwater with 15 TU in 1997 could be estimated at 1967-1970 years. The velocity of groundwater flow was calculated to be $5.3{\times}10^{-7}\;m/s\;and\;2.1{\times}x10^{-6}\;m/s$ respectively from a duration time of 30 years and distance of groundwater flow 500m -2000m from the pond and river to the investigation wells. Because the estimated values of velocity of groundwater flow are compatible with the hydraulic conductivities, it is considered that 30 years is a reasonable period for recharging groundwater.

  • PDF