• Title/Summary/Keyword: Groundwater Use Characteristics

Search Result 158, Processing Time 0.034 seconds

Characterization of Area Installing Combined Geothermal Systems : Hydrogeological Properties of Aquifer (복합지열시스템에 대한 부지특성화: 대수층의 수리지질학적 특성)

  • Mok, Jong-Koo;Park, Yu-Chul;Park, Youngyun;Kim, Seung-Kyum;Oh, Jeong-Seok;Seonwoo, Eun-Mi
    • The Journal of Engineering Geology
    • /
    • v.27 no.3
    • /
    • pp.293-304
    • /
    • 2017
  • This study was performed in order to hydrogeological analysis of aquifer, which is a necessary part for evaluating the efficiency of the combined well and open-closed loops geothermal (CWG) systems. CWG systems have been proposed for the effective utilization of geothermal energy by combining open loop geothermal systems and closed loop geothermal systems. Small aperture CWG systems and large aperture CWG systems were installed at a green house land with water curtain facilities in Chungju City. Aquifer tests include pumping tests and step-drawdown tests were conducted to analyse hydrogeological characteristics of aquifer in the study area. The transmissivity was estimated in the range of $13.49{\sim}58.99cm^2/sec$, and the storativity was estimated in the range of $1.13{\times}10^{-5}{\sim}5.20{\times}10^{-3}$. The geochemical analysis showed $Ca^{2+}$ ion and ${HCO_3}^-$ ion were dominant in groundwater. The Langelier Saturation Index and the Ryznar Stability Index showed low scaling potential of groundwater. In the analysis of vertical water temperature change, the geothermal gradient was estimated as $2.1^{\circ}C/100m$, which indicated the aquifer was enough for geothermal systems. In conclusion, groundwater is rich, can stably use geothermal heat, and it is less likely to cause deterioration of thermal energy efficiency by precipitation of carbonate minerals in study area. Therefore, the study area is suitable for installation of the combined geothermal system.

A Review on Alkalinity Analysis Methods Suitable for Korean Groundwater (우리나라 지하수에 적합한 알칼리도 분석법에 대한 고찰)

  • Kim, Kangjoo;Hamm, Se-Yeong;Kim, Rak-Hyeon;Kim, Hyunkoo
    • Economic and Environmental Geology
    • /
    • v.51 no.6
    • /
    • pp.509-520
    • /
    • 2018
  • Alkalinity is one of the basic variables, which determine geochemical characteristics of natural waters and participate in processes changing concentrations of various contaminants either directly or indirectly. However, not a few laboratories and researchers of Korea still use alkalinity-measurement methods not appropriate for groundwaters, and which becomes one of the major reasons for the poor ion balance errors of the geochemical analysis. This study was performed to review alkalinity-measurement methods, to discuss their advantages and disadvantages, and, thus, to help researchers and analytical specialists in analyzing alkalinity of groundwaters. The pH-titration-curve-inflection-point (PTC-IP) methods, which finds the alkalinity end point from the inflection point of the pH titration curve are revealed to be most accurate. Gran titration technique among them are likely to be most appropriate for accurate estimation of titrant volume to the end point. In contrast, other titration methods such as pH indicator method and pre-selected pH method, which are still commonly being used, are likely to cause erroneous results especially for groundwaters of low ionic strength and alkalinity.

Rainfall-Runoff Analysis using SURR Model in Imjin River Basin

  • Linh, Trinh Ha;Bae, Deg-Hyo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.439-439
    • /
    • 2015
  • The temporal and spatial relationship of the weather elements such as rainfall and temperature is closely linked to the streamflow simulation, especially, to the flood forecasting problems. For the study area, Imjin river basin, which has the specific characteristics in geography with river cross operation between North and South Korea, the meteorological information in the northern area is totally deficiency, lead to the inaccuracy of streamflow estimation. In the paper, this problem is solved by using the combination of global (such as soil moisture content, land use) and local hydrologic components data such as weather data (precipitation, evapotranspiration, humidity, etc.) for the model-driven runoff (surface flow, lateral flow and groundwater flow) data in each subbasin. To compute the streamflow in Imjin river basin, this study is applied the hydrologic model SURR (Sejong Univ. Rainfall-Runoff) which is the continuous rainfall-runoff model used physical foundations, originally based on Storage Function Model (SFM) to simulate the intercourse of the soil properties, weather factors and flow value. The result indicates the spatial variation in the runoff response of the different subbasins influenced by the input data. The dependancy of runoff simulation accuracy depending on the qualities of input data and model parameters is suggested in this study. The southern region with the dense of gauges and the adequate data shows the good results of the simulated discharge. Eventually, the application of SURR model in Imjin riverbasin gives the accurate consequence in simulation, and become the subsequent runoff for prediction in the future process.

  • PDF

Operation Characteristics of Open Type Geothermal Heat Pump (개방형 지열 히트펌프 시스템의 운전 특성)

  • Lim, Hyo-Jae;Kong, Hyoung-Jin;Song, Yoon-Seok;Park, Seong-Koo
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.701-706
    • /
    • 2006
  • Groundwater heat pump systems are the oldest of the ground-souce systems and it has various type. Standing column well type are must be located in hard rock geology site and produce sufficient water for the conventional open loop system. These system are indirect type(the building circulating loop and ground water are intercept). Existence of the exchanger the foundation protect water quality to use of open loop. The design of open loop system are concern on the power requirements. An experimental study was analysis the extremely heating operation COP of ground water heat pump system. Operation efficiency of the 50RT systems shows that, COP $2.9{\sim}5.0$ in heating operation. And generally it shows 3.4.

  • PDF

Liquefaction hazard assessment in a GIS environment: A case study of Buğday Pazarı neighborhood in Çankırı province

  • Erenm Yurdakul;Sevkim Ozturk;Enderm Sarifakioglu
    • Geomechanics and Engineering
    • /
    • v.36 no.5
    • /
    • pp.455-464
    • /
    • 2024
  • Seismic movements have varying effects on structures based on characteristics of local site. During an earthquake, weak soils are susceptible to damage due to amplified wave amplitudes. Soil-structure interaction issue has garnered increased attention in Türkiye, after devastating earthquakes in Kocaeli Gölcük (1999), Izmir (2020), Kahramanmaraş Pazarcık and Elbistan (2023). Consequently, liquefaction potential has been investigated in detail for different regions of Türkiye, mainly with available field test results. Çankırı, a city located close to North Anatolian Fault, is mainly built on alluvium, which is prone to liquefaction. However, no study on liquefaction hazard has been conducted thus far. In this study, groundwater level map, SPT map, and liquefaction risk map have been generated using Geographical Information System (GIS) for the Buğday Pazarı District of Çankırı province. Site investigations studies previously performed for 47 parcels (76 boreholes) were used within the scope of this study. The liquefaction assessment was conducted using Seed and Idriss's (1971) simplified method and the visualization of areas susceptible to liquefaction risk has been accomplished. The results of this study have been compared with the City Council's precautionary map which is currently in use. As a result of this study, it is recommended that minimum depth of boreholes in the region should be at least 30m and adequate number of laboratory tests particularly in liquefiable areas should be performed. Another important recommendation for the region is that detailed investigation should be performed by local authorities since findings of this study differ from currently used precautionary map.

The heavy metal contaminations of sediments from some gully-pots : eastern part of seoul, Korea (도로변 우수관 퇴적물의 중금속오염 (I) : 서울시 동부지역)

  • 이평구;김성환;윤성택
    • Journal of Soil and Groundwater Environment
    • /
    • v.6 no.4
    • /
    • pp.25-40
    • /
    • 2001
  • In order to investigate the degree of heavy metal pollution, 280 urban gully-pot sediments were collected from 13 localities in eastern part of Seoul. The uncontaminated stream sediments were also studied for comparison. A series of studies have carried out concerning the physicochemical characteristics of the sediments and the distribution of Cd, Co, Cr, Cu, Ni, Pb, and Zn. Total metal concentrations of gully-pot sediments and uncontaminated stream sediments were analyzed using acid extraction. After predigestion with $NHO_3$, the sample was digested with mixed acid ($NHO_3$-$HClO_4$). The gully-pot sediments were characterized by very high concentrations of Zn, Cu, Pb and Cr, indicating an anthropogenic contribution of these metals to the sediment chemistry Heavy metal concentrations in the gully-pot sediments were 1-329 times higher than the mean content of metals in the uncontaminated stream sediments, depending on the metals. In particular, the highest mean concentrations of Zn, Cu, Pb and Cr were noticed in the gully-pot sediments from Yeouido, Junggu, Junggu, and Dongdaemungu, respectively. The mean value of total Zn concentration in the business and commercial areas is 2-3.5 times higher than that in industrial areas. This suggests that Zn is mainly derived from automobiles (rubber of automobile tires). The mean concentrations of Cu and Cr are significantly high in the commercial and industrial areas, indicating that industrial activities may cause the accumulation of Cu and Cr in the sediments. The Pb level in gully-pot sediments is comparatively low, due to the use of unleaded gasoline in automobiles since 1987.

  • PDF

Development of Coupled SWAT-SWMM Model (I) Model Development (SWAT-SWMM 결합모형의 개발 (I) 모형의 개발)

  • Kim, Nam-Won;Won, Yoo-Seung
    • Journal of Korea Water Resources Association
    • /
    • v.37 no.7
    • /
    • pp.589-598
    • /
    • 2004
  • From the continuous long-term rainfall-runoff standpoint, the urbanization within a watershed causes land use change due to the increase in impervious areas, the addition of manmade structures, and the changes in river environment. Therefore, rainfall-runoff characteristics changes drastically after the urbanization. Due to these reasons, there exists the demand for rainfall-runoff simulation model that can quantitatively evaluate the components of hydrologic cycle including surface runoff, river flow, and groundwater by considering urban watershed characteristics as well as natural runoff characteristics. In this study, continuous long-term rainfall-runoff simulation model SWAT-SWMM is developed by coupling semi-distributed continuous long-term rainfall-runoff simulation model SWAT with RUNOFF block of SWMM, which is frequently used in the runoff analysis of urban areas in order to consider urban watershed as well as natural watershed. The coupling of SWAT and SWMM is described with emphasis on the coupling scheme, model limitations, and the schematics of coupled model.

Hydrogeological Performance Assessment for Underground Oil Storage Caverns (지하유류비축시설 수리안정성 평가방안)

  • 김천수;배대석;김경수;고용권;송승호
    • The Journal of Engineering Geology
    • /
    • v.7 no.3
    • /
    • pp.229-245
    • /
    • 1997
  • There are Common aspects between the underground oil storage cavern and the radioactive waste disposal facility. Both facilities use appropriately the intrinsic natural berrier characteristics of the rock mass and additionally the engineered barrier system for the long term safety. The geological structures and their hydrogeological characteristics in a faactured rock mass act a major role in the safety and performance of the underground oil storage facility through the design, construction and the operation stages. Because the fracture system distributed in a fractured rock block is complicated owing to their own geometrical and hydrogeological attributes, the hydrogeological perforrmrnce of the facility would depend mainly upon the understandings of their characteristics. This study reviews the uncertainties and key issues which have to be considered to analyse the groundwater flow system in a fractured rock mass and proposes the techniques applicable to characterize the hydrogeological parameter.

  • PDF

A Study on the Selectively Block Barrier for Prevent the Spread of TPH and Phenol in the Ground (지중 내 TPH, Phenol의 확산방지를 위한 선택적 차수재 제조에 관한 연구)

  • HoJin Lim;WooRi Cho;SeungJin Oh;SuHee Kim;JaiYoung Lee
    • Journal of the Korean Geosynthetics Society
    • /
    • v.23 no.1
    • /
    • pp.1-7
    • /
    • 2024
  • In this study, a selecvively block barrier was developed to prevent the spread of contaminants (TPH, Phenol) in the ground only when contamination occurs. The materials were used Jumunjin sand, bentonite, polyolefin elastomer and spill hound marine. First, the properties and environmental hazards characteristics of materials were analyzed for evaluated their usability. Then, the possibility of use as a barrier material was confirmed by analyzing the water permeability characteristics that change after 24 hours of contact with contaminants. As a result of the analysis, the pH of each component was similar to the general groundwater pH range. In addition, the toxicity characteristics and the possibility of dissolution of hazardous substances, it was determined that there was no environmental hazard as the content was below the regulation value. Lastly, when comparing the permeability coefficient before and after contact with the contaminant, the permeability coefficient of approximately α × 10-3cm/sec before contact was reduced to α × 10-6cm/sec after contact with the contaminant.

Characteristics in Chemical Properties of Agricultural Groundwater in Gyeongnam Province (경남지역 농업용 지하수의 수질특성)

  • Lee, Seong-Tae;Kim, Eun-Seok;Song, Won-Doo;Kim, Jin-Ho;Kim, Min-Kyeong;Lee, Young-Han
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.5
    • /
    • pp.698-703
    • /
    • 2012
  • This survey was conducted to obtain basic data of the quality of groundwater for agriculture in Gyeongnam province. Groundwater samples from paddy 15, upland 15, and plastic film house 30 sites were collected on April, July, and October in every two years from 2002 to 2008. According to the result of water quality analysis, groundwater quality was suitable for irrigation purpose averagely. The $NO_3$-N contents by land use were in the order of plastic film house > upland > paddy field and its contents were 6.53, 4.80, and $3.68mg\;L^{-1}$, respectively. In annual changes of water quality, pH was no significant change in paddy, upland, and plastic film house by 6.6~6.9. EC was increased in upland and plastic film house in 2008 and majors factors were $NO_3$-N and $Cl^-$. In upland and plastic film house, $NO_3$-N contents were 4.72 and $6.52mg\;L^{-1}$ in 2002, respectively, whereas they were 5.63 and $8.70mg\;L^{-1}$ in 2008, respectively. Of the investigated sites, $NO_3$-N was exceeded water quality standards for agriculture by 3.3~15.0% in plastic film house and $Cl^-$ was exceeded water quality standards for agriculture by 2.2% in upland of 2004. The $NO_3$-N contents were decreased with well depth and their contents were $5.38mg\;L^{-1}$ from 3~10 m, $4.87mg\;L^{-1}$ from 10~20 m, and $2.58mg\;L^{-1}$ from above 30 m. The $NO_3$-N contents by soil texture were highest in sandy loam by $5.73mg\;L^{-1}$ and lowest in clay loam by $4.13mg\;L^{-1}$. The $NO_3$-N contents by crops category were in order of fruit vegetables > leaf vegetables > rice > fruits > beans, contents of fruit vegetables and leaf vegetables were 5.81 and $5.30mg\;L^{-1}$, respectively.