• Title/Summary/Keyword: Groundwater Storage

Search Result 279, Processing Time 0.037 seconds

Groundwater Flow Characteristics Affected by the Seawater Intrusion near Simulated Underground Storage Caverns in the Coastal Area (임해지역의 모의 지하 비축 시설 주변에서 해수 침투에 의한 지하수 유동 특성)

  • 황용수;배현숙;서동일;김경수;김천수
    • The Journal of Engineering Geology
    • /
    • v.9 no.1
    • /
    • pp.17-29
    • /
    • 1999
  • There are three major processes to impact the groundwater flow near underground storage caverns in the coastal area; effect of topography, effect of sea water intrusion, and effect of excavation. In this paper, the effects of three items were numerically studied to identify the major cause for altering the flow pattern. It turned out that the excavation is the most significant effect on the groundwater flow system. The groundwater pressure distributions and consequent groundwater pathways were significantly altered near the openings. By increasing the groundwater pressures from water curtain holes, the potential leakage of storage cavern was properly prevented

  • PDF

Evaluation of Percolation Rate of Bedrock Aquifer in Coastal Area (해안지역 암반대수층의 침누수량 평가)

  • Lee, Jeong-Hwan;Jung, Haeryong;Park, Joo-Wan;Yoon, Jeong Hyoun;Cheong, Jae-Yeol;Park, Sun Ju;Jun, Seong-Chun
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.14 no.1
    • /
    • pp.21-33
    • /
    • 2016
  • Estimation of groundwater hydrologic cycle pattern is one of the most critical issues in sustainable management of groundwater resources in coastal area. This study estimated groundwater percolation by using the water balance methodology and hydrogeological characteristics of land use and soil. Evapotranspiration was computed by using the Thornthwaite method, and surface runoff was determined by using the SCS-CN technique. Groundwater storage change was obtained as 229 mm/a (17.8% of the average annual rainfall, 1286 mm/a), with 693 mm/a (60.1%) of evapotranspiration and 124 mm/a (9.6%) of surface runoff. Rainfall and groundwater storage change was highly correlated, comparing with the relationships between rainfall and evapotranspiration, and between rainfall and surface runoff. This result indicates that groundwater storage change responds more sensitively to precipitation than evapotranspiration and surface runoff.

The Influences of Aquifer Thermal Energy Storage (ATES) System on Geochemical Properties of Groundwater (대수층 계간 축열시스템 적용을 위한 지하수의 화학적 특성 변화)

  • Choi, Hanna;Lee, Hong-Jin;Shim, Byoung Ohan
    • Journal of Soil and Groundwater Environment
    • /
    • v.26 no.3
    • /
    • pp.14-24
    • /
    • 2021
  • Aquifer thermal energy storage (ATES) system uses groundwater thermal energy for cooling and heating of buildings, and it is also often utilized to provide warm water to crops and plants for the purpose of enhancing agricultural yields. This study investigated the potential influences of a ATES system on the geochemical properties of groundwater by simulating the variation of hydrochemistry and saturation index of groundwater during ATES operation. The test bed was installed at an agricultural field, which is mainly composed of an groundwater-rich alluvial plain. The simulation results showed no significant precipitation of mineral phases such as manganese-iron oxide, carbonate and sulfate around the ATES test bed, as well as no debasement of other important water quality parameters. The implementation of ATES system in the study area was appropriate and effective for utilizing the thermal energy of groundwater for agricultural use.

Development of an Efficient Method to Evaluate the Optimal Location of Groundwater Dam (최적의 지하댐 입지 선정을 위한 효율적 평가 방법 개발)

  • Jeong, Jina;Park, Eungyu
    • Economic and Environmental Geology
    • /
    • v.53 no.3
    • /
    • pp.245-258
    • /
    • 2020
  • In this study, a data-driven response surface method using the results acquired from the numerical simulation is developed to evaluate the potential storage capacity of groundwater due to the construction of a groundwater dam. The hydraulic conductivities of alluvium and basement rock, depth and slope of the channel are considered as the natural conditions of the location for groundwater dam construction. In particular, the probability models of the hydraulic conductivities and the various types of geometry of the channel are considered to ensure the reliability of the numerical simulation and the generality of the developed estimation model. As the results of multiple simulations, it can be seen that the hydraulic conductivity of basement rock and the depth of the channel greatly influence to the groundwater storage capacity. In contrast, the slope of the channel along the groundwater flow direction shows a relatively lower impact on the storage capacity. Based on the considered natural conditions and the corresponding numerical simulation results, the storage capacity estimation model is developed applying an artificial neural network as the nonlinear regression model for training. The developed estimation model shows a high correlation coefficient (>0.9) between the simulated and the estimated storage amount. This result indicates the superiority of the developed model in evaluating the storage capacity of the potential location for groundwater dam construction without the numerical simulation. Therefore, a more objective and efficient comparison for the storage capacity between the different potential locations can be possibly made based on the developed estimation model. In line with this, the proposed method can be an effective tool to assess the optimal location of groundwater dam construction across Korea.

Comparison of hydrochemical informations of groundwater obtained from two different underground storage systems

  • Lee, Jeonghoon;Kim, Jun-Mo;Chang, Ho-Wan
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.04a
    • /
    • pp.110-113
    • /
    • 2002
  • Statistical- based, principal component analysis (PCA) was applied to chemical data from two underground storage systems containing LPG to assess the usefulness of such technique at the initial stage (Pyeongtaek) or middle stage (Ulsan) of hydrochemical studies. For the first case, both natural and anthropogenic contamination characterize regional groundwater. Saline water buffered by Namyang lake affects as a natural factor, whereas cement grouting influence as an artificial factor. For the second study area, contaminations due to operation of LPG caverns, such as disinfection activity and cement grouting effect, deteriorate groundwater quality. This study indicates that principal component analysis would be particularly useful for summarizing large data set for the purpose of subsurface characterization, assessing their vulnerability to contamination and protecting recharge zones.

  • PDF

Case Study: Groundwater Recharge Hydrograph in Pyeongchang River (평창강 지하수 함양곡선 연구)

  • Kwak, Jaewon
    • Journal of Wetlands Research
    • /
    • v.23 no.2
    • /
    • pp.173-182
    • /
    • 2021
  • It is important to extract and assess low-flow recession characteristics for water resources management in the upper reaches of a stream. It is difficult to express the groundwater flow recession characteristics for streamflow synthetically. The linear recession model has been widely used by baseflow recession analysis for reason of simplicity and convenience, but recent studies show that nonlinear recession models fit well, and the relationship between the reservoir storage of shallow unconfined aquifers and the groundwater discharge was to be identified as nonlinear in the literature based on the analysis of numerous streamflow recession curves. The objective of the study is to decode these nonlinear characteristics, including evaporation loss, storage, and recharge of groundwater using streamflow. By analyzing the observed time series of streamflow from the study area, which is the Pyeongchang River basin in Korea, the main components of the underlying groundwater balance, namely, discharge, evaporation loss, storage, and recharge, can be identified and quantified. As a result of the study, depletion of groundwater by evapotranspiration losses through the water uptake of tree roots was found to bias the recession curves and the estimated reservoir parameters. The seasonality of both rainfall and potential evaporation, analysis of the recession curves, stratified according to time of the year, allowed the quantification of evapotranspiration loss as a function of a calendar month and stored groundwater storage.

Simulation of aquifer temperature variation in a groundwater source heat pump system with the effect of groundwater flow (지하수 유동 영향에 따른 지하수 이용 열펌프 시스템의 대수층 온도 변화 예측 모델링)

  • Shim, Byoung-Ohan;Song, Yoon-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.701-704
    • /
    • 2005
  • Aquifer Thermal Energy Storage (ATES) can be a cost-effective and renewable geothermal energy source, depending on site-specific and thermohydraulic conditions. To design an effective ATES system having influenced by groundwater movement, understanding of thermo hydraulic processes is necessary. The heat transfer phenomena for an aquifer heat storage are simulated using FEFLOW with the scenario of heat pump operation with pumping and waste water reinjection in a two layered confined aquifer model. Temperature distribution of the aquifer model is generated, and hydraulic heads and temperature variations are monitored at the both wells during 365 days. The average groundwater velocities are determined with two hydraulic gradient sets according to boundary conditions, and the effect of groundwater flow are shown at the generated thermal distributions of three different depth slices. The generated temperature contour lines at the hydraulic gradient of 0.00 1 are shaped circular, and the center is moved less than 5m to the groundwater flow direction in 365 days simulation period. However at the hydraulic gradient of 0.01, the contour center of the temperature are moved to the end of boundary at each slice and the largest movement is at bottom slice. By the analysis of thermal interference data between two wells the efficiency of the heat pump system model is validated, and the variation of heads is monitored at injection, pumping and no operation mode.

  • PDF

Estimation of Groundwater Storage Change and Its Relationship with Geology in Eonyang Area, Ulsan Megacity (울산광역시 언양지역의 지하수 저류 변화량 산정 및 지질과의 관련성)

  • Kim, Nam-Hoon;Hamm, Se-Yeong;Kim, Tae-Yong;Cheong, Jae-Yeol;An, Jeong-Hoon;Jeon, Hang-Tak;Kim, Hyoung-Soo
    • The Journal of Engineering Geology
    • /
    • v.18 no.3
    • /
    • pp.263-276
    • /
    • 2008
  • In diverse hydrogeologic fields, estimation of groundwater storage change is one of the most critical issues. Accurate estimation methods for determining groundwater storage change are required more and more. For Yeonyang area of Ulsan Megacity, groundwater storage change was estimated by using water balance method and hydrogeological analyses. The estimates of groundwater storage change was 240 mm corresponding to 18.7% of mean annual precipitation. Direct runoff was calculated as 137 mm (10.6% of mean annual precipitation) by using SCS-CN method. Evapotranspiration based on the Thornthwaite method was calculated as 776 mm (60.5% of mean annual precipitation). Hydraulic properties of the soil types do not show any distinct relation with hydraulic conductivity of the rocks. This fact suggests that hydraulic property on the surface is different from that of subsurface geology. According to multi-linear regression analysis between groundwater storage change and hydraulic parameters, a regression equation of groundwater storage change, which was explained by precipitation and evapotranspiration, was established.

Modeling Artificial Groundwater Recharge in the Hancheon Drainage Area, Jeju island, Korea (제주도 한천유역 지하수 모델개발을 통한 인공함양 평가)

  • Oh, Se-Hyoung;Kim, Yong-Cheol;Koo, Min-Ho
    • Journal of Soil and Groundwater Environment
    • /
    • v.16 no.6
    • /
    • pp.34-45
    • /
    • 2011
  • For the Hancheon drainage area in Jeju island, a groundwater flow model using Visual MODFLOW was developed to simulate artificial recharge through injection wells installed in the Hancheon reservoir. The model was used to analyze changes of the groundwater level and the water budget due to the artificial recharge. The model assumed that $2{\times}10^6m^3$ of storm water would recharge annually through the injection wells during the rainy season. The transient simulation results showed that the water level rose by 39.6 m at the nearest monitoring well and by 0.26 m at the well located 7 km downstream from the injection wells demonstrating a large extent of the affected area by the artificial recharge. It also shown that, at the time when the recharge ended in the 5th year, the water level increased by 81 m at the artificial reservoir and the radius of influence was about 2.1 km downstream toward the coast. The residence time of recharged groundwater was estimated to be no less than 5 years. The model also illustrated that 15 years of artificial recharge could increase the average linear velocity of groundwater up to 1540 m/yr, which showed 100 m/yr higher than before. Increase of groundwater storage due to artificial recharge was calculated to be $2.4{\times}10^6$ and $4.3{\times}10^6m^3$ at the end of the 5th and 10th years of artificial recharge, respectively. The rate of storage increase was gradually diminished afterwards, and storage increase of $5.0{\times}10^6m^3$ was retained after 15 years of artificial recharge. Conclusively, the artificial recharge system could augment $5.0{\times}10^6m^3$ of additional groundwater resources in the Hancheon area.