• 제목/요약/키워드: Groundwater Resources Management

검색결과 220건 처리시간 0.032초

Establishment of Best Management Indicator for Sustainable Agricultural Water Quality using Delphi Survey Method

  • Kim, Min-Kyeong;Jung, Goo-Bok;Hong, Seong-Chang;Kim, Myung-Hyun;Choi, Soon-Kun;Kwon, Soon-Ik;So, Kyu-Ho
    • 한국토양비료학회지
    • /
    • 제48권5호
    • /
    • pp.379-383
    • /
    • 2015
  • Indicators of environmental conditions describe the state of the environment and the quantity and quality of natural resources. This study deduced the evaluation items to assess each sub-indicator for agricultural water quality and conducted the surveying using the Delphi method based on agricultural water quality experts. Considering its importance, environmental, state, and management indicators showed that state indicator such as COD concentration for surface water and $NO_3-N$ concentration for groundwater was ranked as first and followed by amount of fertilizer. Its indicators were correlated with state and environmental indicators in surface water and groundwater. The best management indicators were calculated to assess the agricultural surface water and ground water quality. The indicator could be used in established policies for management and conservation of water resources.

인공구조물에 의한 하천 주변지역 지하수 시스템 변화의 수치 해석 (Numerical Simulation of Groundwater System Change in a Riverside Area due to the Construction of an Artificial Structure)

  • 이정환;함세영;이충모;이종진;김형수;김규범
    • 지질공학
    • /
    • 제22권3호
    • /
    • pp.263-274
    • /
    • 2012
  • 본 연구는 지하수 수치 모델링을 통하여 인공 구조물 건설에 따른 하천주변 지역의 지하수 환경 변화를 평가하였다. 하성충적층의 지하수위는 강우 사건보다는 하천수위의 계절적인 변동에 민감하게 반응하며, 이것은 지하수가 하상퇴적층을 통해 하천수와 직접적으로 연결되어 있기 때문이다. 한편, 부정류 모델링 결과, 지하수위는 하성충적층 내부 저지대에 위치하는 독산의 남쪽과 동쪽 지역, 덤밑산 동쪽 지역에서 상승되고 있으며, 지하수위 상승폭은 6 m 이내로 평가되었다.

대수층 함양관리에 있어서 지질매질에 의한 비소 자연저감 가능성 평가 (Assessment of Potential Natural Attenuation of Arsenic by Geological Media During Managed Aquifer Recharge)

  • 박다소미;현성필;하규철;문희선
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제25권3호
    • /
    • pp.12-22
    • /
    • 2020
  • Managed aquifer recharge (MAR) is a promising water management strategy for securing stable water resources to overcome water shortage and water quality deterioration caused by global environmental changes. A MAR demonstration site was selected at Imgok-ri, Sangju-si, Korea, based on screening for the frequency of drought events and local water supply situations. The abundant groundwater discharging from a nearby abandoned coal mine is one of the potential recharge water sources for the MAR implementation. However, it has elevated levels of arsenic (~12 ㎍/L). In this study, the potential of the natural attenuation of arsenic by the field geological media was investigated using batch and column experiments. The adsorption and desorption parameters were obtained for two drill core samples (GM1; 21.8~22.8 m and GM2; 26.0~27.8 m depth) recovered from the potentially water-conducting fracture-zones in the injection well. The effluent arsenic concentrations were monitored during the continuous flow of the mine drainage water through the columns packed with the core samples. GM2 removed about 60% of arsenic in the influent (0.1 mg-As/L) while GM1 removed about 20%. The results suggest that natural attenuation is an acitive process occurring during the MAR operation, potentially lowering the arsenic level in the mine drainage water below the regulatory standard for drinking water. This study hence demonstrates that using the mine drainage water as the recharge water source is a viable option at the MAR demonstration site.

물-에너지-식량 넥서스를 활용한 통합적 농업자원관리정책 평가 - 지하수 함양 사업을 중심으로 - (The Evaluation of Integrated Agricultural Resource Management Policy through Water-Energy-Food Nexus - An Application to Management of Aquifer Recharge Project -)

  • 성재훈;이현정;조원주
    • 농촌계획
    • /
    • 제25권4호
    • /
    • pp.35-45
    • /
    • 2019
  • Korean agriculture experienced rapid changes in its production structure to respond fluctuations on external conditions, and these changes have increased the dependence between agricultural resources and negative environmental externalities from agricultural production. As a tool for managing agricultural resources and reducing negative environmental effects from agricultural production, this study employs water-energy-food nexus for integrated resource management. To show the necessity of an integrated approach, this study evaluated three policy scenarios including changes in capital interest, water capacity, and energy cost. The results show that three scenarios have unintended consequences for farmers' incomes and their use of resources. Also the unintended consequences of government policies also affected farms' vulnerability to environmental changes. In particular, the expansion of financing for the establishment of non-circulating water curtain facilities did not have a significant effect on the crop switching of farms. In addition, increasing the amount of available water through the aquifer recharge project leads to the installation of non-circulating water curtain facilities in zucchini farm. It raises dependence on groundwater in agricultural production, thereby increasing farmers' vulnerability to groundwater shortages. These results imply that the agricultural sector needs to consider the interrelationship between agricultural resources when designing or evaluating policies.

분포형 물수지 모델(WetSpass-M)을 이용한 삽교천 상류 유역에서의 월별 지하수 함양량 산정 (Evaluation of Groundwater Recharge using a Distributed Water Balance Model (WetSpass-M model) for the Sapgyo-cheon Upstream Basin)

  • 안효원;하규철
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제26권6호
    • /
    • pp.47-64
    • /
    • 2021
  • In this study, the annual and monthly groundwater recharge for the Sapgyo-cheon upstream basin in Chungnam Province was evaluated by water balance analysis utilizing WetSpass-M model. The modeling input data such as topography, climate parameters, LAI (Leaf Area Index), land use, and soil characteristics were established using ArcGIS, QGIS, and Python programs. The results showed that the annual average groundwater recharge in 2001 - 2020 was 251 mm, while the monthly groundwater recharge significantly varied over time, fluctuating between 1 and 47 mm. The variation was high in summer, and relatively low in winter. Variation in groundwater recharge was the largest in July in which precipitation was heavily concentrated, and the variation was closely associated with several factors including the total amount of precipitation, the number of days of the precipitation, and the daily average precipitation. This suggests the extent of groundwater recharge is greatly influenced not only by quantity of precipitation but also the precipitation pattern. Since climate condition has a profound effect on the monthly groundwater recharge, evaluation of monthly groundwater recharge need to be carried out by considering both seasonal and regional variability for better groundwater usage and management. In addition, the mathematical tools for groundwater recharge analysis need to be improved for more accurate prediction of groundwater recharge.

QGIS를 이용한 경기도내 토양오염원의 중점관리 지점 선정 (Priority Management Using the QGIS for Sources of Contaminated Soil in Gyeonggi-do Province)

  • 손영금;김지영;박진호;임흥빈;김종수
    • 한국환경보건학회지
    • /
    • 제46권1호
    • /
    • pp.88-95
    • /
    • 2020
  • Object: The purpose of this study was to select priority points for soil management using the location of groundwater and to suggest this method for soil contamination surveys. Method: Groundwater impact range was set to an area of 100 to 500 meters from the center point of agricultural groundwater wells. Data on industrial complex and factory areas, areas of stored or used ores and scrap metals, areas associated with waste and recycling, and traffic-related facilities areas were collected and checked for whether they fall within the groundwater impact range. Longitude and latitude coordinates of these data were mapped on the groundwater impact range using QGIS (Quantum Geographic Information System). Results: Considering the groundwater impact range, the points were selected as follows: 589 points were selected from 6,811 factories and 259 points were selected from 1,511 recycling business points. Traffic-related facility areas were divided between gas stations, bus depots, and auto mechanics. Thirty-four points were selected from 149 bus depots and 573 points were selected from 6,013 auto mechanic points. From the 2,409 gas station points, 323 were selected. Conclusion: Contaminated soil influences groundwater and crops, which can harm human health. However, soil pollution is not easily identified, so it is difficult to determine what has occurred. Pollution must be prevented beforehand and contaminated soil found. By selecting and investigating soil contamination survey points in consideration of the location of groundwater wells, we can safely manage water resources by preventing groundwater contamination in advance.

FACTORS OF GROUNDWATER FLUCTUATION IN SHIN KORI NUCLEAR POWER PLANTS IN KOREA

  • Hyun, Seung Gyu;Woo, Nam C.;Kim, Kue-Young;Lee, Hyun-A
    • Nuclear Engineering and Technology
    • /
    • 제45권4호
    • /
    • pp.539-552
    • /
    • 2013
  • To establish an aging management plan considering seawater influx and changes in groundwater within nuclear power plant sites, the characteristics of groundwater flow must be understood. This study investigated the characteristics of groundwater flow within the site and analyzed groundwater level recorded by monitoring wells to evaluate groundwater flow characteristics and elements that affected these characteristics for supplying the information to conduct the appropriate aging management for ensuring the safety of the safety-related structures in Shin Kori Unit 1 and 2. The increase in groundwater level during the wet season results from high sea-level conditions and the large amount of precipitation. As a result of the analysis of groundwater distribution and change characteristics, the site could be divided into a rainfall-affected area and a tide-affected area. First, the rainfall-affected area can further be divided into areas that are affected simultaneously by excavation, backfill, and a permanent dewatering system. Secondly, areas that are not affected by excavation, or the dewatering system, or by structure arrangement and excavation. Analysis of the spectrum for wells affected by tides resulted in confirmation of the M2 component (12.421 hr) and S2 component (12.000 hr) of the semidiurnal tides, and the O1 component (25.819 hr) of the diurnal tides. In the cross-correlation results regarding tides and groundwater levels, the lag time occurred diversely within 1-3 hours by the effect of the well location from sea, the distribution of the backfill material with depth, and the concrete structure.

농업용 관정의 기계적 처리 이후 성능 개선 효과의 정량적 평가 사례 (Quantitative Evaluation for Improvement Effects of Performance After Mechanical Rehabilitation Treatments on Agricultural Groundwater Well)

  • 송성호;이병선;안중기
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제21권4호
    • /
    • pp.42-49
    • /
    • 2016
  • Step-drawdown pumping tests for identifying the improvement of groundwater well performance after rehabilitation treatments were conducted in three longstanding wells. Three selective mechanical treatment methods including power bubble, high-voltage electric pulse, and air surging were applied to these wells and the applicability of these methods to secure additional groundwater resources were evaluated quantitatively. Commonly, drawdown at final stage of stepdrawdown pumping tests after rehabilitation decreased by as much as 0.61~0.70 meters compared to those before rehabilitation. In addition, final specific drawdown values of three wells increased from 9% to 14% after rehabilitation. Formation loss coefficient and well loss coefficient decreased to 6.1% and 60.6%, respectively, indicating some clogging materials by precipitation/corrosion/microbe within pores of aquifer materials, gravel packs, and screens were effectively removed by applied methods. Decrease of formation loss coefficient was higher in the well applied by the power bubble method meanwhile high-voltage electric pulse method demonstrated the higher decrease of well loss coefficient. Additionally secured groundwater amounts after rehabilitation ranged from 23.3 to 32.1 m3/day, which account for 8~16% of initially developed pumping rates of the wells. From the results of this study, the effective selection of rehabilitation treatments considering aquifer characteristics are expected to contribute to secure groundwater resources for irrigation as well as to plan systematic management program for groundwater resources in rural area.

Old Water Contributions to a Granitic Watershed, Dorim-cheon, Seoul

  • Kim, Hyerin;Cho, Sung-Hyun;Lee, Dongguen;Jung, Youn-Young;Kim, Young-Hee;Koh, Dong-Chan;Lee, Jeonghoon
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제20권5호
    • /
    • pp.34-40
    • /
    • 2015
  • It is reported that the intensity of rainfall will likely increase, on average, over the world on 2000. For water resources security, many studies for flow paths from rainfall or snowmelt to subsurface have been conducted. In Korea, few isotopic studies for characterizations of flow path have been undertaken. For a better understanding of how water derived from atmosphere moves to subsurface and from subsurface to stream, an analysis of precipitation and stream water using oxygen-18 and deuterium isotopes in a small watershed, Dorim-cheon, Seoul, was conducted with high resolution data. Variations of oxygen-18 in precipitation greater than 10‰ (δ18Omax = −1.21‰, δ18Omin = −11.23) were observed. Isotopic compositions of old water (groundwater) assumed as the stream water collected in advance were −8.98‰ and −61.85‰ for oxygen and hydrogen, respectively. Using a two-component mixing model, hydrograph separation of the stream water in Dorim-cheon was conducted based on weighted mean value of δ18O. As a result, except of instant dominance of rainfall, contribution of old water was dominant during the study period. On average, 71.3% of the old water and 28.7% of rainfall contributed to the stream water. The results show that even in the small watershed, which is covered with thin soil layer in granite mountain region, the stream water is considerably influenced by old water inflow rather than rainfall.