• 제목/요약/키워드: Groundwater Level

검색결과 1,085건 처리시간 0.023초

제주도 대정유역의 수리전도도 적용에 따른 지하수 모델링 결과 평가 (Assessment of Groundwater Flow Modeling according to Hydraulic Conductivity Zonation in the Dae-jeong Watershed of Jeju Island)

  • 박재규;김민철;양성기;이준호;김용석
    • 한국환경과학회지
    • /
    • 제25권12호
    • /
    • pp.1727-1738
    • /
    • 2016
  • In this study, groundwater flow was analyzed targeting Dae-jeong watershed, which exhibited the largest variations of groundwater levels at the identical elevation points among the 16 watersheds of Jeju Island. The issues of the methods applied in practice were identified and improvement plans were suggested. This groundwater-flow estimates derived by applying hydraulic conductivity values onto zones of equal topographic ground level were found to be quite different from actual measured groundwater flow. Conversely, groundwater-flow estimates that utilized hydraulic conductivity values applied onto groundwater-level equipotential lines indicated relatively lesser divergences from actual measured groundwater flow. The reliabilities of the two approaches were assessed for 60 randomly selected points on DEM (digital elevation model) maps, The method using hydraulic conductivity values applied onto groundwater-level contours turned out to be the more reliable approach for the Dae-jeong watershed in Jeju Island.

ARIMA 모델을 이용한 수막재배지역 지하수위 시계열 분석 및 미래추세 예측 (Time-series Analysis and Prediction of Future Trends of Groundwater Level in Water Curtain Cultivation Areas Using the ARIMA Model)

  • 백미경;김상민
    • 한국농공학회논문집
    • /
    • 제65권2호
    • /
    • pp.1-11
    • /
    • 2023
  • This study analyzed the impact of greenhouse cultivation area and groundwater level changes due to the water curtain cultivation in the greenhouse complexes. The groundwater observation data in the Miryang study area were used and classified into greenhouse and field cultivation areas to compare the groundwater impact of water curtain cultivation in the greenhouse complex. We identified the characteristics of the groundwater time series data by the terrain of the study area and selected the optimal model through time series analysis. We analyzed the time series data for each terrain's two representative groundwater observation wells. The Seasonal ARIMA model was chosen as the optimal model for riverside well, and for plain and mountain well, the ARIMA model and Seasonal ARIMA model were selected as the optimal model. A suitable prediction model is not limited to one model due to a change in a groundwater level fluctuation pattern caused by a surrounding environment change but may change over time. Therefore, it is necessary to periodically check and revise the optimal model rather than continuously applying one selected ARIMA model. Groundwater forecasting results through time series analysis can be used for sustainable groundwater resource management.

인공신경망 모형을 이용한 제주 지하수위의 장기예측 (Long-term Prediction of Groundwater Level in Jeju Island Using Artificial Neural Network Model)

  • 정일문;이정우;장선우
    • 대한토목학회논문집
    • /
    • 제37권6호
    • /
    • pp.981-987
    • /
    • 2017
  • 투수성이 큰 화산섬인 제주도에서는 땅속으로 함양된 지하수자원이 가장 중요한 수원이므로 지하수의 적정관리가 매우 중요하다. 특히 가뭄시 지하수의 이용은 염수침투를 유발할 수 있으므로 지하수위 강하에 따른 단계별 제한 조치가 마련되어 있다. 농업용 지하수위에 대한 적정 지하수 이용을 위해서는 보다 장기적인 예측을 통해 사전에 대비하는 것이 필요하다. 이에 본 연구에서는 인공신경망 모형을 이용한 지하수위의 월단위예측기법을 개발하였고, 대표적인 관측공에 대해 적용하였다. 월단위 지하수위를 예측한 결과 학습 및 검증기간 모두 예측 성능이 우수한 것으로 분석되었다. 또한 장기예측을 위해서 입력인자로 월단위 지하수위 예측치를 순차적으로 이용하는 연속지하수위예측 모형을 구축하고 수개월 동안 무강수의 극한조건에 대한 지하수위 저하 양상을 분석하였다.

지하수위 변동법에 의한 함양량 산정: 하천-대수층 상호작용의 영향 (Estimating Groundwater Recharge using the Water-Table Fluctuation Method: Effect of Stream-aquifer Interactions)

  • 구민호;김태근;김성수;정성래;강인옥;이찬진;김용철
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제18권5호
    • /
    • pp.65-76
    • /
    • 2013
  • The water-table fluctuation (WTF) method has been often used for estimating groundwater recharge by analysis of waterlevel measurements in observation wells. An important assumption inherent in the method is that the water level rise is solely caused by precipitation recharge. For the observation wells located near a stream, however, the water-level can be highly affected by the stream level fluctuations as well as precipitation recharge. Therefore, in applying the WTF method, there should be consideration regarding the effect of stream-aquifer interactions. Analysis of water-level hydrographs from the National Groundwater Monitoring Wells of Korea showed that they could be classified into three different types depending on their responses to either precipitation recharge or stream level fluctuations. A simple groundwater flow model was used to analyze the errors of the WTF method, which were associated with stream-aquifer interactions. Not surprisingly, the model showed that the WTF method could greatly overestimate recharge, when it was used for the observation wells of which the water-level was affected by streams. Therefore, in Korea, where most groundwater hydrographs are acquired from wells nearby a stream, more caution is demanded in applying the WTF method.

유류오염 지하수 정화를 위한 양수처리법 적용시 지하수위 변화 및 수처리장치의 효율평가 (Efficiency Assessment of Wastewater Treatment Plant and Groundwater Level by Pump and Treat Technology Applied for Petroleum Contaminated Site)

  • 조장환;김준호;박민규;김태형;최연수;최상일
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제19권3호
    • /
    • pp.33-38
    • /
    • 2014
  • This study was performed to evaluate the applicability of pump and treat technology as well as to identify the changes of groundwater level by continuous pumping at the petroleum contaminated site. A total of 9 monitoring wells were installed at the site and the contaminant concentrations, TPH, benzene, toluene, ethylbenzene and xylene, of groundwater were measured. With the results of the groundwater monitoring, a total of 9 wells were set up for pumping contaminated groundwater in 3 locations. The waste water treatment facility with a capacity of $10m^3/hr$ was installed in the site and operated for about 1 year. The concentrations of the contaminated groundwater from the 3 pumping wells were exceeded groundwater regulation for benzene and TPH. However, the effluent concentration of benzene and TPH was under the regulation showing the maximum level of 0.011 mg/L and 1.2 mg/L during the operation periods. Groundwater levels were decreased by continuous pumping and those were not recovered during the operation period. Groundwater levels of PW-1,2, PW-3,4,5,6 and PW-7,8,9 were decreased about 5 m, 0.7 m, 2 m, respectively. The hydraulic conductivity (K) of the region of PW-1,2, PW-3,4,5,6 and PW-7,8,9 was estimated to be $6.143{\times}10^{-5}cm/sec$, $2.675{\times}10^{-5}cm/sec$, $1.198{\times}10^{-4}cm/sec$. Groundwater level was seemed to be affected not by hydraulic conductivity but by morphological effect. These results show that the pump and treat technology has high applicability for the restoration of petroleum contaminated groundwater but needs continuous monitoring to prevent rapid groundwater drawdown.

지하수 양수 모의를 위한 SWMM의 수정 (A Modification of SWMM for a Groundwater Pumping Simulation)

  • 이상호;이정민
    • 한국물환경학회지
    • /
    • 제23권5호
    • /
    • pp.628-635
    • /
    • 2007
  • As the hydrologic cycle is transformed by the expansion of impermeable area as a result of the urbanization, the function of an ecosystem is deteriorated by the transformed hydrologic cycle. In this study, a SWMM code was modified to have a groundwater pumping option about rivers-aquifer interaction to be possible. The modified SWMM was applied to continuous simulations of urban runoff from Hakuicheon watershed and it was used to analyse the effect of a groundwater pumping. The modified SWMM overcame the limitation of the ground subroutine that it only simulate groundwater inflow from ground to rivers. The result of continuous simulation of groundwater pumping is that surface runoff, groundwater runoff and groundwater level are well simulated, and Modified SWMM expressed groundwater runoff by negative number (-) when groundwater level is less than river stage.

지하수위와 수온 변동에 나타난 부지 규모 지하수 흐름장의 복잡성 (Complexity of Groundwater Flow System in a Site Reflected in the Fluctuations of Groundwater Level and Temperature)

  • 박종훈;이동엽;우남칠
    • 자원환경지질
    • /
    • 제55권6호
    • /
    • pp.563-570
    • /
    • 2022
  • 이 조사는 지상에 존재하는 지하수의 잠재오염원(저장탱크)으로부터 오염물질 누출 시, 이를 조기 진단하기 위한 지하수 오염관측망의 설계 인자로서 부지 규모 지하수환경의 시공간적 변동성을 파악하고자 시행되었다. 부지 내 위치한 저장탱크 주변에 22~25 m 심도로 3개의 관측공을 설치하고, 이들로부터 약 22개월 동안 2분 간격으로 지하수위와 수온 변화를 관측하였으며, 이 자료는 주변 기상관측소의 강수 및 기온 자료와 비교 분석되었다. 조사기간 동안 지하수위의 연 변화와 강수 현상에 대한 반응, 지하수온의 변동과 기온에 대한 지연시간 등은 비교적 작은 규모의 부지에서도 지하수 흐름과 유동 경로의 복잡성을 지시한다. 따라서 오염누출 감시를 위한 지하수 관측망은 상세한 부지특성화 조사 결과에 근거하여 부지 지하수환경의 복잡성을 충분히 고려하여 설계되어야 한다.

Kriging 기법을 이용한 지하수위 분포 추정 (Application of kriging approach for estimation of water table elevation)

  • 박준경;박영진;위용곤;이상호;홍창수;추석연
    • 한국터널지하공간학회 논문집
    • /
    • 제4권3호
    • /
    • pp.217-227
    • /
    • 2002
  • ${\bigcirc}{\bigcirc}$ 터널 구간의 지하수유동분석을 위해 지구통계학적 기법을 적용하였다. 이 지역의 표고와 관정 및 터널시추공에서의 지하수위의 선형회귀분석결과 상관성이 매우 큰 것으로 나타났다. 보통크리깅 및 공크리깅을 이용하여 작성된 지하수위 등고선도는 표고등고선도를 기준으로 비교해보면 공크리깅에 의한 것이 정밀성이 더 큰 것으로 나타났다. 보통크리깅과 공크리깅에 의해 작성된 지하수위 등고선도에서는 지하수 유동상태를 검토해 보면, 북서쪽의 산악지형에서 계곡쪽으로, 봉우리 일대에서 외곽쪽으로 각각 유동하는 것으로 나타났다. 본 연구를 통해 터널굴착 예정지역의 정확한 분석이나 관측자료의 평가없이 사용하던 지하수위 분포를 정량적으로 설계에 반영할 수 있었으며, 공간상에 분포하는 자료측정의 제한성과 경제적인 이유로 충분한 자료를 확보할 수 없는 현실에 비추어 볼 때 지구통계학은 미지의 구간에 대해 보다 정량적인 자료를 제공할 수 있음을 보여주었다.

  • PDF

Groundwater Investigation of the Cheonggyecheon Watershed Area

  • Choi, Doo-Hyung;Yang, Jea-Ha;Jun, Sung-Chun;Lee, Kang-Keun;Kim, Yoon-Young
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2004년도 총회 및 춘계학술발표회
    • /
    • pp.323-327
    • /
    • 2004
  • The groundwater system of the Cheonggyecheon watershed is very complicated because it is influenced by many factors such as pumping out, groundwater leakages into subway stations, civil use of groundwater, and leaking water from water supply and sewage lines. So the characterization and evaluation of tile groundwater flow and contaminant transport in the Cheonggyecheon water system is quite a difficult task. The purpose of this study is to analyze of the influence to the 'groundwater' below the Cheonggyecheon watershed by the 'surface water' on the Cheonggyecheon stream after the restoration. We have so far collected groundwater quality data, hydrogeologic aquifer parameters, and tile amount of leakages into subway stations and its influence on the groundwater system of the Cheonggyecheon. Results show that groundwater level was influenced by the direction and depth of a 녀bway station. This study will continue to monitor groundwater quality, a water level fluctuation relation between rainfall and groundwater recharge for further investigation of the groundwater flow system in Cheonggyecheon.

  • PDF

Groundwater system Investigation of the Cheonggyecheon watershed Area

  • Choi, Doo-Hyung;Yang, Jae-Ha;Jun, Seong-Chun;Lee, Kang-Keun;Kim, Yoon-Young
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2004년도 임시총회 및 추계학술발표회
    • /
    • pp.326-329
    • /
    • 2004
  • The groundwater system of the Cheonggyecheon watershed is very complicated because it is influenced by many factors such as pumping out, groundwater leakages into subway stations, civil use of groundwater, and leaking water from water supply and sewage lines. So the characterization and evaluation of the groundwater flow and contaminant transport in the Cheonggyecheon water system is quite a difficult task. The purpose of this study is to analyze the influence on the‘groundwater’ below the Cheonggyecheon watershed by the‘maintenance water’on the Cheonggyecheon stream after the restoration. We have so far collected groundwater quality data, hydrogeologic aquifer parameters, and the amount of leakages into subway stations and its influence on the groundwater system. Results show that groundwater level was influenced by the direction and depth of subway tunnel. This study will continue to monitor groundwater quality, a water level fluctuation relation between rainfall and groundwater recharge for further investigation of the groundwater flow system in the Cheonggyecheon watershed.

  • PDF