• Title/Summary/Keyword: Grounding impedance

Search Result 155, Processing Time 0.028 seconds

High Frequency Impedance Calculation of Grounding Meshes Installed at Power Substations (전력용 변전소에 설치된 메쉬 접지망의 고주파 임피던스 계산)

  • Han, Poong;Choi, Chang-Hyek
    • Proceedings of the KIEE Conference
    • /
    • 1998.07e
    • /
    • pp.1578-1582
    • /
    • 1998
  • The ground potential rise generated by the switching surge or lightning stroke may be dangerous to personnel and cause damage to electronic control parts. For a first step to the transient performance analysis. high frequency impedances of grounding grids have been calculated and discussed. Grounding grids include 7 square grids from $10m{\times}10m$ to $80m{\times}80m$. The high frequency current was injected into the center and a corner of the grounding grid. The calculation results indicate that the impedance of the grounding grid is significantly influenced by frequency and the point of injection of the current. and the effective radius of a large grounding grid may be represented in $15{\sim}20m$.

  • PDF

A Study on High Impedance Grounding Protection for DC Power Supply System (DC 급전계통 고저항 지락보호에 대한 연구)

  • Lee, Kuk-Myoung;Kim, Byung-Hyun;So, Sun-Young;Kim, Hak-Lyun
    • Proceedings of the KSR Conference
    • /
    • 2006.11b
    • /
    • pp.878-884
    • /
    • 2006
  • Grounding fault and short of the DC power supply systems are detected and protected by high-speed circuit breaker, linked breaking device, ground relay and fault selective device, all of which are installed and operated in substaions. however, there have been many cases in which the protective devices did not detect grounding of of the over head catenary systems on concrete support for an extended period of time. Such cases often cause severe damages to the supports with high grounding resistances. If grounding accidents occur repetitively, the earth current and the rise of earth potential can damage not only passenger and staff but also electric facilities and equipment, necessitating high cost and endeavor to restore. The following study points out various problems that can be occurred occur as a result of high impedance grounding accident, and proposes a new system which can protect and intercept them.

  • PDF

Ground ing Impedance Characteristics of Ground Rods in frequency Domain (주파수 영역에서 봉상전극의 접지임피던스 특성)

  • Lee, Hyung-Soo;Shim, Keon-Bo;Kim, Kyung-Chul;Choi, Jong-Kee;Park, Sang-Man
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.248-253
    • /
    • 2005
  • Although DC ground resistance is a good index of grounding performance for grounding electrodes, it does not reflect the grounding performance during transient state. Besides, impulse ground impedance, which is defined by a ratio of the peak value of transient ground potential rise to the peak value of impulse current, cannot be an absolute index due to its dependence on impulse current shape. In this paper, ground impedance of various rod-type ground electrodes has been measured in frequency domain ranging from 1 Hz to hundreds of kHz. Equivalent circuit models of the ground rod have been identified from the measured values of ground impedance in frequency domain.

  • PDF

Characteristics of Transient Ground Impedance of a Scaled Grounding Grid on the High Current Impulse (대전류 임펄스에 대한 소규모 메쉬전극의 과도접지임피던스 특성)

  • Lee, Tae-Hyung;Cho, Sung-Chul;Eom, Ju-Hong;Yoo, Yang-Woo;Lee, Bok-Hee
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1418_1419
    • /
    • 2009
  • This paper presents the transient impedance when high current impulse up to 5 kA is applied to a scaled grounding grid in test field. For a realistic analysis of transient impedance on the high current impulse in the ground systems, grounding electrode installed outdoors and impulse current generator was used. The results were discussed based on its voltage and current trace, impulse impedance and V-I curve.

  • PDF

Transient Impedance of Large-scale Grounding System under Impulse Current (임펄스 전류에 대한 대규모 접지시스템의 과도접지임피던스)

  • Lee, B.H.;Eom, J.H.;Lee, S.C.;Choi, W.G.;Park, J.S.
    • Proceedings of the KIEE Conference
    • /
    • 1998.07e
    • /
    • pp.1589-1591
    • /
    • 1998
  • This paper presents experimental results of transient impedance characteristics investigated on the site of a large-scale grounding system using impulse current. The ground potential rise was measured while injecting an impulse current and the transient impedance was determined. As a results, the transient impedance was significantly greater than the stationary grounding resistance due to high inductance of ground conductors and leads.

  • PDF

A Study on the Sequence Impedance Modeling of Underground Transmission Systems (지중송전선로의 대칭분 임피던스 모델링에 관한 연구)

  • Hwang, Young-Rok;Kim, Kyung-Chul
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.6
    • /
    • pp.60-67
    • /
    • 2014
  • Power system fault analysis is commonly based on well-known symmetrical component method, which describes power system elements by positive, negative and zero sequence impedance. The majority of fault in transmission lines is unbalanced fault, such as line-to-ground faults, so that both positive and zero sequence impedance is required for fault analysis. When unbalanced fault occurs, zero sequence current flows through earth and ground wires in overhead transmission systems and through cable sheaths and earth in underground transmission systems. Since zero sequence current distribution between cable sheath and earth is dependent on both sheath bondings and grounding configurations, care must be taken to calculate zero sequence impedance of underground cable transmission lines. In this paper, EMTP-based sequence impedance calculation method was described and applied to 345kV cable transmission systems. Calculation results showed that detailed circuit analysis is desirable to avoid possible errors of sequence impedance calculation resulted from various configuration of cable sheath bonding and grounding in underground cable transmission systems.

Measurement and Analysis of Transient Grounding Resistance with the Pulse Generator (펄스발생기에 의한 과도접지저항의 측정과 분석)

  • Park, J.S.;Yang, J.J.;Lee, K.O.;Lee, B.H.;Lee, B.K.;Ohk, Y.H.
    • Proceedings of the KIEE Conference
    • /
    • 1996.07c
    • /
    • pp.1864-1866
    • /
    • 1996
  • Grounding is the art of making an electrical connection to the earth. In order to protect man, electrical and/or electric equipments from the lightning strokes, all the energy of lightning strokes must be diverted via a safe path to earth. It is essential to the transient grounding resistance against lightning strokes. In this paper, measurements and analyses of grounding surge impedance have been investigated. For measurements of grounding surge impedance the pulse generator was designed and fabricated. The pulse generator has rise time of 22.4 ns and pulse duration of $8\;{\mu}s$. The transient grounding resistance has been measuring by injecting low power and step current between the earthing system under test and a remote reference earth and measuring the potential rise caused by this current. As a result, the transient grounding resistance against lightning surge in the short time domain is much higher than steady state grounding resistance.

  • PDF

Frequency-Dependent Grounding Impedances of Counterpoises Associated with Soil Resistivity (대지저항률에 따른 매설지선의 접지임피던스의 주파수의존성)

  • Kim, Tae-Ki;Choi, Young-Chul;Choi, Jong-Hyuk;Lee, Bok-Hee
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.5
    • /
    • pp.114-121
    • /
    • 2010
  • This paper deals with the frequency-dependent grounding impedances of counterpoises relevant to the soil resistivity, the length of counterpoises and the feeding point of test current. The grounding impedances of counterpoises buried in one-layered and two-layered soils were measured and analyzed in the frequency range from 1[kHz] to 10[MHz]. As a result, the frequency-dependent grounding impedances strongly depend on the soil resistivity, and the grounding impedances within the frequency of several tens [kHz] are capacitive behavior in high soil resistivity. When injecting the ground current to the end of counterpoise buried in soil with high resistivity, the grounding impedances in high frequency are increased.

Measurement and Analysis of Frequency Characteristics of Grounding Systems (접지시스템 주파수 특성의 측정과 해석)

  • 최종기;안용호;구선근;박기준;윤진열;정길조;류보혁;김정훈
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.53 no.5
    • /
    • pp.248-252
    • /
    • 2004
  • Since DC ground resistance, which is a good index of the performance of a grounding system in low frequency. does not show the performance in transient state. We measured ground impedances in frequency domain ranging from 0.1 Hz to 900 KHz maximum to quantify the transient grounding performance of 4 types of grounding system. Transfer function was derived from the measured frequency-dependant ground impedance of a grounding grid. A simulation has been performed to verify the transfer function using EMTP (Electro-Magnetic Transient Program).

Evaluation of the Accuracy of Grounding Impedance Measurement of Grounding Grid (접지그리드의 접지임피던스 측정의 정확도 평가)

  • Choi, Jong-Hyuk;Choi, Young-Chul;Jeong, Dong-Cheol;Kim, Dong-Seong;Lee, Bok-Hee
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.12
    • /
    • pp.146-153
    • /
    • 2009
  • Recently, the common grounding systems are adapted in most large structures. Since the ground resistance is insufficient to evaluate the performance of grounding systems, it is needed to measure grounding impedance. Even though the methods of measuring grounding impedance of large grounding systems are presented in IEEE standard 81.2, but they have not been described in detail. In this paper, we present the accurate method of measuring grounding impedance based on the revised fall-of-potential method and measurement errors due to earth mutual resistance and ac mutual coupling depending on locating test electrodes at remote earth were examined for the 15[m]$\times$15[m] grounding grid. As a result, the measurement error due to earth mutual resistance is decreased when the distance to auxiliary electrodes increased. To get rid of measurement errors due to mutual coupling, the potential lead should be installed at a right angle to the current lead. When the angle between the potential and the current leads is an acute angle or an obtuse angle, the mutual couple voltage is positive or negative, respectively. Generally, the measurement errors due to mutual coupling with an obtuse angle route are lower than those with an acute angle route.