• Title/Summary/Keyword: Grounding Method

Search Result 293, Processing Time 0.03 seconds

Assessment of Potential Interference between Grounding Electrodes Using ETM Method (ETM 기법을 이용한 접지전극의 전위간섭 평가)

  • Gil, Hyoung-Jun;Kim, Dong-Ook;Kim, Dong-Woo;Lee, Ki-Yeon;Choi, Chung-Seog
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.333-336
    • /
    • 2007
  • This paper deals with assessment of potential interference between grounding electrodes using ETM(Electrolytic Tank Modeling) method. When a test current flowed through grounding electrode, potential rise was measured and analyzed using an electrolytic tank in real time. In order to analyze the potential interference between grounding electrodes, ETM method was studies. Potential interference between isolated grounding electrodes was evaluated as functions of the separation distance between grounding electrodes and the configuration of grounding electrode to be induced. It was found that the separation distance between grounding electrodes in reducing the potential interference was a major factor.

  • PDF

A Study on the Electric Railroad Grounding System of Tunnels and Bridges (전기철도 시스템에서의 터널, 교량구간 접지방안 연구)

  • 윤응규;오광해;오기봉
    • Proceedings of the KSR Conference
    • /
    • 2002.10a
    • /
    • pp.559-565
    • /
    • 2002
  • This paper presents a standard grounding scheme for bridge and tunnel areas where earthing wires cannot be easily buried. Specially, a new grounding method in which structure grounding devices are used shows good grounding effects like the earthing-wire grounding scheme. The proposed method can be a measure for equal potential in case earthing cables are disconnected.

  • PDF

Proposition of Improved Neutral Grounding Method and Analytical Evaluation on Practicality in Underground Distribution System (지중배전시스템의 개선된 중성점 접지방식 제안과 실효성에 대한 해석적 평가)

  • Jeong, Seok-San;Lee, Jong-Beom;Jang, Seong-Whan;Kim, Yong-Kap;Kwon, Shin-Nam
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.3
    • /
    • pp.479-485
    • /
    • 2011
  • In 22.9kV underground distribution system, power cables are provided with multiple-point ground in which each neutral line of the distribution cable(A, B, C phases) and three-wire common grounded at every connecting section. But in such grounding methods, circulating current flows between the neutral wire and grounding wire. And power loss due to circulating current also occurs in all conductors. Therefore it is getting necessary reducing circulating current in underground distribution system. This paper presents improved grounding method to overcome such problems. The proposed grounding method eliminates circulating current in the neutral line effectively and is verified that there is no electrical problem or any ineffectiveness of operating protection systems. These analyses are carried out by EMTP/ATPDraw to compare each grounding methods in steady and transient state. This grounding method suggested in this paper can be applied on real distribution system after field tests considering elimination of circulating current was implemented.

Method for Safety-Decision to Apply International Standard Grounding Systems to Domestic Power System by Computer Simulation (국제 규격 접지시스템의 국내 적용을 위한 시뮬레이션 기반의 안전도 평가 방안)

  • Lee, Soon;Kim, Jung-Hoon;Park, Jung-Wook
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.3
    • /
    • pp.344-353
    • /
    • 2008
  • To apply the appropriate new grounding system to domestic power system, safety has to be guaranteed under the given circumstances. It is not possible to decide the safety of grounding systems by the experimental test because safety experiments directly relate to the human life and the installed electric machines. Therefore, the computer simulation program to decide the safety of grounding systems based on the IEC standard systems, has to be developed. This paper proposes the computer simulation based method to decide the safety of grounding system with the concepts of touch voltage, step voltage, human resistivity, and applied electric current according to the several conditions of human body located in the corresponding grounding systems. The proposed method is implemented by Matlab/Simulink and Visual C++ programming tools for its visualization.

A New Measurement Method of the Ground Resistance Using a Low-pass Filter in Energized Substations (지역필터를 이용한 수변전실 접지저항의 새로운 측정방법)

  • Lee, Bok-Hui;Eom, Ju-Hong;Lee, Seung-Chil;Kim, Seong-Won;An, Chang-Hwan
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.50 no.8
    • /
    • pp.387-393
    • /
    • 2001
  • This paper describes an advanced measuring method and precise evaluation of the ground resistance for the grounding system of energized substations and power equipments. A grounding system of substations consists of all interconnected grounding connections of grounded conductors, neutral ground wires, underground conductors of distribution lines, cable shields, grounding terminals of equipments, and etc. It is very difficult to measure the accurate ground resistance of the grounding terminals of equipments, and etc. It is very difficult to measure the accurate ground resistance of the grounding system of high voltage energized substations because of harmonic components caused by switched power supplies or overloads. The conventional fall-of-potential method may be subject to big error if stray ground currents and potentials are present. In this work, to improve the precision in measurements of the ground resistance by eliminating the effects of harmonic components and stray currents and potentials, the investigations of the ground resistance measurement by using a low pass filter in a model energized grounding system were conducted. The accuracy of ground resistance mesurements was evaluated as a function of the ratio of the test signal to noise (S/N). The errors due to the proposed ground resistance measurement method were decreased with increasing S/N and were less than 5[%] as S/N is 10. The proposed ground resistance measurement method appears to be considerably more accurate than the conventional fall-of -potential method. It is allows cancellation of the parasitic resistance of energized grounding systems, to employ the measurement method that allows cancellation of the parasitic effects due to other circulating ground currents and ground potential rises in practical situations.

  • PDF

Problems and Improvement Method of Grounding System in Electrical Facilities (건축전기설비에 적용되는 접지시스템 문제점과 개선방안)

  • Chung, Young-Ki;Kwak, Hee-Ro;Shin, Hyo-Sub;Chung, Chun-Byoung;Nam, Taik-Joo
    • Proceedings of the KIEE Conference
    • /
    • 2001.07a
    • /
    • pp.47-50
    • /
    • 2001
  • Presently the Korean grounding system uses TN system, multi-grounding method with TT independent grounding method. Nevertheless TN system can't exist with TT system in the technological terms. If they coexist, it causes ground-fault circuit not to operate, and brings about different electrical potential rise by customer system. It brings about serious problems for safety. This paper aims for improving method of grounding system based on the technical analysis on instances in foreign countries and Korea. Almost standards and construction manner were apt to be internationalized after WTO/TBT agreement was concluded. The internal grounding systems should meet the international criteria and reliability for safety, and be provided with technologically impeccable standards.

  • PDF

Design and Implementation of Wideband Grounding Impedance Measurement Device using IQ Demodulation Method (IQ 복조 기법을 이용한 광대역 접지 임피던스 측정기의 설계 및 구현)

  • Kim, Young-Jin;Gil, Hyung-Jun;Kim, Sung-Ju;Kim, Jae Hyung
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.6
    • /
    • pp.19-24
    • /
    • 2016
  • One of key parameters on lightning protection system design of electric, information and communication system is grounding impedance. Earth impedance includes numerous information about earthing performance of grounding system. This paper suggests grounding impedance measuring device which is comprised of wideband current source, voltage and current measuring components. We used IQ Demodulation to measure more accurate phase difference of voltage and current. The range of frequency is up to 1 MHz that is IEEE defined as the range of lightning surge. We compared developed grounding impedance measuring device with existing one to test its performance, and we used grounding system while we implemented measurement and analysing by using fall of potential method IEEE Std.81 proposed.

Reduction of the the Ground Surface Potential Gradients by Installing Auxiliary Grounding Grids (보조접지그리드의 시설에 의한 대지표면전위경도의 저감)

  • 이승칠;엄주홍;이복희;김효진
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.16 no.2
    • /
    • pp.121-129
    • /
    • 2002
  • The present paper describes a technique for installing an effective grounding grids, the major objective is forced on the experimental evaluation of the performance and characteristics with the arrangement and installation method for grounding grids consisting of the means to protect electric shock, electronics and computerized facilities against lightning, switching and ground fault surges. The study is oriented on two major areas: (1) the analysis of the ground surface potential gradient with the arrangement of grounding grids, (2) the control of the dangerous ground surface potential rise. The experiments wee carried out with the impulse currents as a function of the installation method or arrangement of grounding grids. An installation method of the inclined auxiliary grounding grid was proposed to overcome the drawbacks of equally spared grounding grids, i.e. an appropriate design concept far the installation of grounding grids was found out, It has been shown that the installation of the intwined auxiliary grounding grid can also result in a mere than 50% decrease in the maximum potential gradient on the ground surface and enhance the level of safety for persons and electronic equipments..

A Method for Evaluating Electric Shock Hazards Based on Human Body Current (인체전류를 기반으로 하는 감전의 위험성 평가방법)

  • Lee, Bok-Hee;Yoo, Yang-Woo;Choi, Jong-Hyuk
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.6
    • /
    • pp.108-114
    • /
    • 2011
  • In order to mitigate the possible hazards from electric shock due to the touch and step voltages, the high resistivity material such as gravel is often spread on the earth's surface in substations. When the grounding electrode is installed in two-layer soil structures, the surface layer soil resistivity is different with the resistivity of the soil contacted with the grounding electrodes. The design of large-sized grounding systems is fundamentally based on assuring safety from dangerous voltages within a grounding grid area. The performance of the grounding system is evaluated by tolerable touch and step voltages. Since the floor surface conditions near equipment to be grounded are changed after a grounding system has been constructed, it may be difficult to determine the tolerable touch and step voltage criteria. In this paper, to propose an accurate and convenient method for evaluating the protective performance of grounding systems, the propriety of the method for evaluating the current flowing through the human body around on a counterpoise buried in two-layer soils is presented. As a result, it is reasonable that the grounding system performance would be evaluated by measuring and analyzing the current flowing through the human body based on dangerous voltages such as the touch or step voltages and the contact resistance between the ground surface and feet.

Measurement of Resistance of Multi-Grounded System by Ground Current Measurement (접지전류 측정에 의한 다중 접지계통의 접지저항 측정)

  • 최종기;안용호;정길조;한병성;김경철
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.53 no.4
    • /
    • pp.234-237
    • /
    • 2004
  • Measuring ground resistance has been a popular method of evaluation of the grounding electrode performance. If some portions of grounding electrodes are lost by corrosion, aging or other reasons, consequent deteriotation of the grounding performance would be resulted. It is one of the reasons why it is required to evaluate the performance of grounding systems regularly. However, in case of the electric facilities with multi-grounded system such as power substations with multi-grounded overhead ground wires and/or distribution line neutrals, it is practically difficult to disconnect neutrals or skywires from the substation grounding mesh for the ground resistance measurement. In this paper, a method for the grounding performance measurement of multi-grounded systems, which is based on the measuring ground current distributions, has been proposed. A field test results has shown the validity of the proposed test method.