• Title/Summary/Keyword: Ground-test simulation

Search Result 334, Processing Time 0.026 seconds

Preliminary Field Trial of Improved Train Control System Using on-board Control (선로변 시설물 차상 제어를 위한 차상중심 열차제어시스템 예비 현장시험)

  • Park, Chul Hong;Choi, Hyeon Yeong;Baek, Jong-Hyen
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39C no.3
    • /
    • pp.298-306
    • /
    • 2014
  • The railway signalling system for safe train operation regulates the train speed to ensure the safety distance between consecutive trains by using wayside facilities such as track circuits and interlocking systems. In addition, this signalling system controls the trackside equipment such as a railway point along the train line. This ground-equipment-based train control systems require high CAPEX and OPEX. To deal with these problems, the train control system using the on-board controller has been recently proposed and its related technologies have been widely studied. The on-board-controller-based train control system is that the on-board controller can directly control the trackside equipment on the train line. In addition, if this system is used, the wayside facilities can be simplified, and as a result, the efficient and cost-effective train control system can be realized. To this end, we have developed the prototypes of the on-board controller and wayside object control units which control the point and crossing gate and performed the integrated operation simulation in a testbed. In this paper, before the field test of the on-board-controller-based train control system, we perform the preliminary field trial including the installation test, wireless access test, interface test with other on-board devices, and normal operation test.

A Study on the Numerical Modeling of the Fish Behabior to the Model Net - Examination on the Validity of a Numerical Model of Fish Behavior - (모형그물에 대한 어군행동의 수직 모델링에 관한 연구 - 어군행동을 나타내는 수치 모델의 타당성 검토 -)

  • Lee, Byoung-Gee;Lee, Dae-Jae;Chang, Ho-Young
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.31 no.4
    • /
    • pp.326-339
    • /
    • 1995
  • In this paper, the validity of the numerical model of fishes' behavior presented in our earlier paper was examined by the whiteness test on the residual of numerical model and by the comparison between experiment and simulation on several indexes represented by fishes' swimming characteristics. The validity of the numerical model was proved statistically by means of the whiteness test of the residual. The similarity was confirmed by comparison between experiment and simulation for the swimming trajectory of fishes, the mean distance of individual from wall, the mean swimming speed and the mean distance between the nearest individuals. These results suggest that the behavior of fishes according to the flow speed in three-dimensional space can be estimated partially by the numerical model presented in our earlier paper. However, a long-term approach to improve the modeling technique on the behavior of fishes may be needed before applying the numerical model presented in our earlier paper to real fishing ground.

  • PDF

Satellite finite element model updating for the prediction of the effect of micro-vibration (미소진동 영향성 예측을 위한 인공위성 유한요소모델 보정)

  • Lim, Jae Hyuk;Eun, Hee-Kwang;Kim, Dae-Kwan;Kim, Hong-Bae;Kim, Sung-Hoon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.8
    • /
    • pp.692-700
    • /
    • 2014
  • In this work, satellite FE (finite element) model updating for the prediction of the effect of micro-vibration is described. In the case of satellites launched in low earth orbit, high agility and more mission accomplishments are required by the customer in order to procure many images from satellites. To achieve the goal, many mechanisms, including high capacity wheels and antennas with multi-axis gimbals have been widely adopted, but they become a source of micro-vibration which could significantly deteriorate the quality of images. To investigate the effect due to the micro-vibration in orbit on the ground, a prediction is conducted through an integrated model coupling the measured jitter sources with FE (finite element) model. Before prediction, the FE model is updated to match simulation results with the modal survey test. Subsequently, the quality of FE model is evaluated in terms of frequency deviation error, the resemblance of mode shapes and FRFs (frequency response functions) between test and analysis.

A Study on the Urethane Foam Material Characteristics and Appropriate Soil Covering for Mine Reclamation Emergency Action through Atificial Fire Test (인공 화재 실험을 통한 광해방지 응급조치용 우레탄 폼 재료 특성 및 적정 복토에 관한 연구)

  • Kim, Soo Lo;Park, Jay Hyun;Lee, Jin Soo;Yang, In Jae
    • Economic and Environmental Geology
    • /
    • v.53 no.3
    • /
    • pp.287-296
    • /
    • 2020
  • Mine Reclamation Project is being carried out with the aim of ensuring a sustainable green living and helping to develop eco-friendly mines by analyzing, removing and preventing the harmful factors. Mines developed during the japanese colonial period and mining boom period are still not repaired throughout the country, and from these scattered risks, public safety is worth pursuing as a top priority. The project that is close to public safety in the mine recalmation project is an emergency treatment, and the most widely used method is a filling method similar to the ground subsidence prevention. If dangerous mine cavity or tunnels are located in the mountains, charging with existing materials may not be possible, or unreasonable cases may occur, and new methods of technological development are required. Emergency actions should be carried out safely and efficiently to prevent the loss of precious people's lives on the hiking paths adjacent to dangerous mining sites. In these field conditions, urethane foam materials may be an alternative. In this study, the applicability of urethane foam materials in mining was reviewed through overseas cases. It was also tested on the appropriate depth of top soil for the protection of urethane foam materials through forest fire simulation test. The test result show that approximately 15cm of soil covering (recommended 20cm over) was suitable for maintaining the function of foam materials from forest fires.

High-Altitude Environment Simulation of Space Launch Vehicle in a Ground-Test Facility (지상시험장비를 통한 우주발사체 고공환경모사 기법 연구)

  • Lee, Sungmin;Oh, Bum-Seok;Kim, YoungJun;Park, Gisu
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.11
    • /
    • pp.914-921
    • /
    • 2017
  • The experimental research on a high-altitude environment simulation of space launch vehicle is important for securing independent technologies with launching space vehicles and completing missions. This study selected an altitude of 65 km for the experiment environment where it exceeded Mach number of 6 after the launch of Korean Space Launch Vehicle(KSLV-II). Shock tunnel was used to replicate the flight condition. After flow establishment, in order to confirm aerodynamic characteristics and normal and oblique shockwaves, the flow verification was carried out by measuring stagnation pressure and heat flux of a forebody model, and shockwave stand-off distance of a hemispherical model. In addition, a shock-free technique to recover free-stream condition has been developed and verified. From the results of the three verification tests, it was confirmed that the flow was replicated with the error of about ${\pm}3%$. The error between the slope angle of inclined shockwave of the scaled down transition section model using the shock-free shape and the slope angle of the horizontal plate model, and between the theoretical and the experimental value of the static pressure of the model were confirmed to be 2% and 1%, respectively. As a result, the efficiency of the shockwave cancellation technique has been verified.

Development of 3D Dynamic Numerical Simulation Method on a Soil-Pile System (지반-말뚝 시스템에 대한 3차원 동적 수치 모델링 기법 개발)

  • Kim, Seong-Hwan;Na, Seon-Hong;Han, Jin-Tae;Kim, Sung-Ryul;Sun, Chang-Guk;Kim, Myoung-Mo
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.5
    • /
    • pp.85-92
    • /
    • 2011
  • The dynamic behavior of piles becomes very complex due to soil-pile dynamic interaction, soil non-linearity, resonance phenomena of soil-pile system and so on. Therefore, the proper numerical simulation of the pile behavior needs much effort and calculation time. In this research, a new modeling method, which can be applied to the conventional finite difference analysis program FLAC 3D, was developed to reduce the calculation time. The soil domain in this method is divided into a near-field region and a far-field region, which is not influenced by the soil-pile dynamic interaction. Then, the ground motion of the far-field is applied to the boundaries of the near-field instead of modeling the far-field region as finite meshes. In addition, the soil non-linearity behavior is modeled by using the hysteretic damping model, which determines the soil tangent modulus as a function of shear strain and the interface element was applied to simulate the separation and slip between the soil and pile. The proposed method reduced the calculation time by as much as one third compared with a usual modeling method and maintained the accuracy of the calculated results. The calculated results by the proposed method showed a good agreement with the prototype pile behavior, which was obtained by applying a similitude law to the 1-g shaking table test results.

Novel Extraction Method for Unknown Chip PDN Using De-Embedding Technique (De-Embedding 기술을 이용한 IC 내부의 전원분배망 추출에 관한 연구)

  • Kim, Jongmin;Lee, In-Woo;Kim, Sungjun;Kim, So-Young;Nah, Wansoo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.6
    • /
    • pp.633-643
    • /
    • 2013
  • GDS format files, as well as layout of the chip are noticeably needed so as to analyze the PDN (Power Delivery Network) inside of IC; however, commercial IC in the market has not supported design information which is layout of IC. Within this, in terms of IC having on-chip PDN, characteristic of inside PDN of the chip is a core parameter to predict generated noise from power/ground planes. Consequently, there is a need to scrutinize extraction method for unknown PDN of the chip in this paper. To extract PDN of the chip without IC circuit information, the de-embedding test vehicle is fabricated based on IEC62014-3. Further more, the extracted inside PDN of chip from de-embedding technique adopts the Co-simulation model which composes PCB, QFN (Quad-FlatNo-leads) Package, and Chip for the PDN, applied Co-simulation model well corresponds with impedance from measured S-parameters up to 4 GHz at common measured and simulated points.

Performance Prediction for an Adaptive Optics System Using Two Analysis Methods: Statistical Analysis and Computational Simulation (통계분석 및 전산모사 기법을 이용한 적응광학 시스템 성능 예측)

  • Han, Seok Gi;Joo, Ji Yong;Lee, Jun Ho;Park, Sang Yeong;Kim, Young Soo;Jung, Yong Suk;Jung, Do Hwan;Huh, Joon;Lee, Kihun
    • Korean Journal of Optics and Photonics
    • /
    • v.33 no.4
    • /
    • pp.167-176
    • /
    • 2022
  • Adaptive optics (AO) systems compensate for atmospheric disturbance, especially phase distortion, by introducing counter-wavefront deformation calculated from real-time wavefront sensing or prediction. Because AO system implementations are time-consuming and costly, it is highly desirable to estimate the system's performance during the development of the AO system or its parts. Among several techniques, we mostly apply statistical analysis, computational simulation, and optical-bench tests. Statistical analysis estimates performance based on the sum of performance variances due to all design parameters, but ignores any correlation between them. Computational simulation models every part of an adaptive optics system, including atmospheric disturbance and a closed loop between wavefront sensor and deformable mirror, as close as possible to reality, but there are still some differences between simulation models and reality. The optical-bench test implements an almost identical AO system on an optical bench, to confirm the predictions of the previous methods. We are currently developing an AO system for a 1.6-m ground telescope using a deformable mirror that was recently developed in South Korea. This paper reports the results of the statistical analysis and computer simulation for the system's design and confirmation. For the analysis, we apply the Strehl ratio as the performance criterion, and the median seeing conditions at the Bohyun observatory in Korea. The statistical analysis predicts a Strehl ratio of 0.31. The simulation method similarly reports a slightly larger value of 0.32. During the study, the simulation method exhibits run-to-run variation due to the random nature of atmospheric disturbance, which converges when the simulation time is longer than 0.9 seconds, i.e., approximately 240 times the critical time constant of the applied atmospheric disturbance.

Automation of Building Extraction and Modeling Using Airborne LiDAR Data (항공 라이다 데이터를 이용한 건물 모델링의 자동화)

  • Lim, Sae-Bom;Kim, Jung-Hyun;Lee, Dong-Cheon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.27 no.5
    • /
    • pp.619-628
    • /
    • 2009
  • LiDAR has capability of rapid data acquisition and provides useful information for reconstructing surface of the Earth. However, Extracting information from LiDAR data is not easy task because LiDAR data consist of irregularly distributed point clouds of 3D coordinates and lack of semantic and visual information. This thesis proposed methods for automatic extraction of buildings and 3D detail modeling using airborne LiDAR data. As for preprocessing, noise and unnecessary data were removed by iterative surface fitting and then classification of ground and non-ground data was performed by analyzing histogram. Footprints of the buildings were extracted by tracing points on the building boundaries. The refined footprints were obtained by regularization based on the building hypothesis. The accuracy of building footprints were evaluated by comparing with 1:1,000 digital vector maps. The horizontal RMSE was 0.56m for test areas. Finally, a method of 3D modeling of roof superstructure was developed. Statistical and geometric information of the LiDAR data on building roof were analyzed to segment data and to determine roof shape. The superstructures on the roof were modeled by 3D analytical functions that were derived by least square method. The accuracy of the 3D modeling was estimated using simulation data. The RMSEs were 0.91m, 1.43m, 1.85m and 1.97m for flat, sloped, arch and dome shapes, respectively. The methods developed in study show that the automation of 3D building modeling process was effectively performed.

Performance Enhancement of Virtual War Field Simulator for Future Autonomous Unmanned System (미래 자율무인체계를 위한 가상 전장 환경 시뮬레이터 성능 개선)

  • Lee, Jun Pyo;Kim, Sang Hee;Park, Jin-Yang
    • Journal of the Korea Society of Computer and Information
    • /
    • v.18 no.10
    • /
    • pp.109-119
    • /
    • 2013
  • An unmanned ground vehicle(UGV) today plays a significant role in both civilian and military areas. Predominantly these systems are used to replace humans in hazardous situations. To take unmanned ground vehicles systems to the next level and increase their capabilities and the range of missions they are able to perform in the combat field, new technologies are needed in the area of command and control. For this reason, we present war field simulator based on information fusion technology to efficiently control UGV. In this paper, we present the war field simulator which is made of critical components, that is, simulation controller, virtual image viewer, and remote control device to efficiently control UGV in the future combat fields. In our information fusion technology, improved methods of target detection, recognition, and location are proposed. In addition, time reduction method of target detection is also proposed. In the consequence of the operation test, we expect that our war field simulator based on information fusion technology plays an important role in the future military operation significantly.