• 제목/요약/키워드: Ground-source heat pump system

검색결과 228건 처리시간 0.021초

지열원 열펌프 시스템의 에너지 생산량 모니터링 신뢰도 향상 방안 연구 (A Study on the Monitoring Methods for Energy Production in Ground Source Heat Pump System)

  • 강신형;이광호;도성록;최종민
    • 한국지열·수열에너지학회논문집
    • /
    • 제15권2호
    • /
    • pp.10-16
    • /
    • 2019
  • In this study, the present regulation of heat metering for the ground source heat pump was investigated. The ground source heat pump has been adopting the heat metering system used in the district heating system for estimating the heating and cooling energy production amount. The accuracy of the present heat metering systems for a water to water ground source heat pump is low, because the system for district heating has a relatively high temperature range comparing with the ground source heat pump operating conditions. Even though the heat amount for the building side should be measured, the heat absorption and extraction amount from or to the ground was measured for the water to air ground source heat pump due to the difficulty of estimating the air side heating and cooling capacity in the present regulation. It is highly recommended to validate the heat metering system to have reliability for the ground source heat pump and develop the system to be applicable water to air ground source heat pump.

유출지하수 열원 지열히트펌프시스템의 난방성능 (Heating Performance of Ground source Heat Pump using Effluent Ground Water)

  • 박근우;이응열
    • 신재생에너지
    • /
    • 제3권2호
    • /
    • pp.40-46
    • /
    • 2007
  • Effluent ground water overflow in deep and broad ground space building. Temperature of effluent ground water is in $12{\sim}20^{\circ}...$ annually and the quality of that water is as good as well water. Therefore if the flow rate of effluent ground water is sufficient as source of heat pump, that is good heat source and heat sink of heat pump. Effuent ground water contain the thermal energy of surrounding ground. So this is a new application of ground source heat pump. In this study open type and close type heat pump system using effluent ground water was installed and tested for a church building with large and deep ground space. The effluent flow rate of this building is $800{\sim}1000\;ton/day$. The heat pump capacity is 5RT. The heat pump heating COP was $3.85{\sim}4.68$ for the open type and $3.82{\sim}4.69$ for the close type system. The system heating COP including pump power is $3.0{\sim}3.32$ for the open type and $3.32{\sim}3.84$ for close type system. This performance is up to that of BHE type ground source heat pump.

  • PDF

유출지하수 열원 지열히트펌프시스템의 냉방성능 (Cooling Performance of Ground source Heat Pump using Effluent Ground Water)

  • 박근우;남현규;강병찬
    • 신재생에너지
    • /
    • 제3권4호
    • /
    • pp.47-53
    • /
    • 2007
  • Effluent ground water overflow in deep and broad ground space building. Temperature of effluent ground water is in $12{\sim}20^{\circ}C$ annually and the quality of that water is as good as living water. Therefore if the flow rate of effluent ground water is sufficient as source of heat pump, that is good heat source and heat sink of heat pump. Effluent ground water contain the thermal energy of surrounding ground. So this is a new application of ground source heat pump. In this study open type and close type heat pump system using effluent ground water was installed and tested for a church building with large and deep ground space. The effluent flow rate of this building is $800{\sim}1000ton/day$. The heat pump capacity is 5RT each. The heat pump cooling COP is $4.9{\sim}5.2$ for the open type and $4.9{\sim}5.7$ for close type system. The system cooling COP is $3.2{\sim}4.5$ for open type and $3.8{\sim}4.2$ for close type system. This performance is up to that of BHE type ground source heat pump.

  • PDF

유출지하수 열원 지열히트펌프시스템의 냉방성능 (Cooling Performance of Ground source Heat Pump using Effluent Ground Water)

  • 박근우;남현규;강병찬
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2007년도 추계학술대회 논문집
    • /
    • pp.471-476
    • /
    • 2007
  • Effluent ground water overflow in deep and broad ground space building. Temperature of effluent ground water is in $12{\sim}20^{\circ}C$ annually and the quality of that water is as good as living water. Therefore if the flow rate of effluent ground water is sufficient as source of heat pump, that is good heat source and heat sink of heat pump. Effuent ground water contain the thermal energy of surrounding ground. So this is a new application of ground source heat pump. In this study open type and c lose type heat pump system using effluent ground water was installed and tested for it church building with large and deep ground space. The effluent flow rate of this building is $800{\sim}1000$ ton/day. The heat pump capacity is 5RT each. The heat pump cooling COP is $4.9{\sim}5.2$ for the open type and $4.9{\sim}5.7$ for close type system. The system cooling COP is $3.2{\sim}4.5$ for open type and $3.8{\sim}4.2$for close type system. This performance is up to that of BHE type ground source heat pump.

  • PDF

대형 Community 건물의 지열원 복합 하이브리드 히트펌프 시스템 성능에 관한 해석적 연구 (Analytical Study on the Performance of Ground Source Compound Hybrid Heat Pump System for Large Community Building)

  • 변재기;정동화;이종길;홍성호;최영돈;조성환
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2008년도 춘계학술대회 논문집
    • /
    • pp.634-637
    • /
    • 2008
  • Ground source heat pumps are clean, energy-efficient and environment-friendly systems cooling and heating. Although the initial cost of ground source heat pump system is higher than that of air source heat pump, it is now widely accepted as an economical system since the installation cost can be returned within an short period of time due to its high efficiency. In the present study, performances of ground source compound hybrid heat pump system applied to a large community building are simulated. The system design and operation process appropriate for the surrounding circumstance guarantee the high benefit of the heat pump system applied to a large community building. If among several renewable energy sources, ground, river, sea, waste water source are chosen as available alternative energies are combined, COP of the system can be increased largely and hybrid heat pump system can reduced the fuel cost.

  • PDF

지역 기후 특성에 따른 지열시스템의 도입경제성 차이에 관한 연구 (Feasibility study of ground source heat pump system according to the local climate condition)

  • 남유진
    • KIEAE Journal
    • /
    • 제14권4호
    • /
    • pp.127-131
    • /
    • 2014
  • The ground source heat pump (GSHP) system is a kind of the temperature differential energy system using relatively stable underground temperature as heat source of space heating and cooling. This system can achieve higher performance of system than it of conventional air source heat pump systems. However, its superiority of the system performance is different according to installation location or local climate, because the system performance depends on the underground condition which is decided by annual average air temperature. In this study, in order to estimate the feasibility of the ground source heat pump system according to the local climate, numerical simulation was conducted using the ground heat transfer model and the surface heat balance model. The case study was conducted in the condition of Seoul, Daejeon, and Busan, In the result, the heat exchange rate of Busan was 34.33 W/m as the largest in heating season and it of Seoul was 40.61 W/m as the largest in cooling.

공조시스템용 지열히트펌프의 실증평가에 관한 연구 (In-situ Performance Evaluation of a Ground Source Heat Pump for an Air Conditioning System)

  • 박윤철;박성구
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제32권1호
    • /
    • pp.66-72
    • /
    • 2008
  • In this study, the ground source heat pump was installed at a research center in Jeju Island to verify the performance of the system and to give an information for a economic feasibility. The performance test was conducted until the heat storage tank temperature reached at $5^{\circ}C$ from $50^{\circ}C$ in the cooling operation, and until the storage temperature goes up to $50^{\circ}C$ from $10^{\circ}C$ in the heating mode. As results, the system performance shows that $2.2{\sim}3.5$ for the cooling operation and $2.5{\sim}3.5$ for heating operation. It is found that the underground is good heat source for the heat pump with $3{\sim}10^{\circ}C$ variation range. The ground source heat pump could be connected one of air conditioning system without any problem in system performance. Based on the economic analysis, the initial cost for the ground source heat pump will be compensated after 4 years operation. If the system runs 20 years, approximately 300 million Won will be saved when the air conditioning system adapt the ground source heat pump based on Life Cycle Cost analysis.

유출지하수열원 지열히트펌프의 냉난방성능 (Cooling and Heating Performance of Ground Source Heat Pump using Effluent Ground Water)

  • 박근우;남현규;강병찬
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2007년도 동계학술발표대회 논문집
    • /
    • pp.434-440
    • /
    • 2007
  • The Effluent ground water overflows in deep and broad ground space building. Temperature of effluent ground water is in 12$\sim$18$^{\circ}C$ annually and the quality of that water is as good as living water. Therefore if the flow rate of effluent ground water is sufficient as source of heat pump, that is good heat source and heat sink of heat pump. Effuent ground water contain the thermal energy of surrounding ground. So this is a new application of ground source heat pump. In this study open type and close type heat pump system using effluent ground water was installed and tested for a church building with large and deep ground space. The effluent flow rate of this building is 800$\sim$1000 ton/day. The heat pump capacity is 5RT each. The heat pump system heating COP was 3.0$\sim$3.3 for the open type and 3.3$\sim$3.8 for the close type system. The heat pump system cooling COP is 3.2$\sim$4.5 for the open type and 3.8$\sim$4.2 for close type system. This performance is up to that of BHE type ground source heat pump.

  • PDF

원예시설의 에너지 부하패턴을 고려한 축열식 지열시스템 설계법에 관한 연구 (Design method of heat storage type ground source heat pump system considering energy load pattern of greenhouse)

  • 유민경;남유진;이광호
    • KIEAE Journal
    • /
    • 제15권3호
    • /
    • pp.57-63
    • /
    • 2015
  • Purpose: Ground source heat pump system has been attracted in the horticulture industry for the reduction of energy costs and the increasing of farm income. Even though it has higher initial costs, if it uses in combination with heat storage, it is able to reduce the initial costs and operate efficiently. In order to have significant effect of heat storage type ground source heat pump system, it is required to design the capacity considering various conditions such as energy load pattern and operating schedule. Method: In this study, we have designed heat storage type ground source heat pump system in 5 cases by the operating schedule, and examined the system to find the most economic and having superb performance regarding the system COP(Coefficient of Performance) and energy consumption, using dynamic energy simulation, TRNSYS 17. Result: Conventional ground source heat pump system has lower energy consumption than heat storage type, but following the result of LCC(Life Cycle Cost) analysis, the heat storage type was more economic due to the initial costs. In addition, it has the most efficient performance and energy costs in the case of the smallest heat storage time.

지열원과 수열원을 이용한 하이브리드 히트펌프 시스템의 에너지 성능 비교 분석 연구 (A Study on Comparative Analysis of Energy Performance of Hybrid Heat Pump Systems Using Ground Heat Source and Water Heat Source)

  • 박시훈;김종현;민준기
    • 한국지열·수열에너지학회논문집
    • /
    • 제17권4호
    • /
    • pp.59-67
    • /
    • 2021
  • In this study, the performance of the single heat source system and the hybrid system was comparatively analyzed. Case 1 is a ground heat source system, and Case 2 is a water heat source system. Case 3, a hybrid system, reduced the capacity of the ground heat source and applied a water heat source as an auxiliary heat source, and Case 4 was composed of a system that applied a water heat source as an auxiliary heat source to the ground heat source system. As a result of the simulation, in case 3, energy consumption was reduced by up to 2.67% compared to ground sources for cooling. In Case 4, COP was improved by up to 10.02% compared to ground sources during cooling, and EST was calculated to be 2.42℃ lower. During heating, 0.83% was improved compared to the water heat source. At this time, the EST was calculated to be 2.25℃ higher than the water heat source.