• Title/Summary/Keyword: Ground-based radio navigation

Search Result 23, Processing Time 0.028 seconds

A Navigation Method Based on the NDGPS and LORAN-C (NDGPS와 LORAN-C 기반의 항법 방안 연구)

  • Shin, Mi-Young;Park, Chan-Sik;Lee, Chang-Bok;Suh, Sang-Hyun;Lee, Sang-Jeong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.9
    • /
    • pp.891-897
    • /
    • 2006
  • The coverage of the NDGPS is nationwide currently and by 2007 more than 2 NDGPS signal will be available in most of Korean peninsula both coastal area and inland. The role of NDGPS beacon is transmitting pseudorange corrections however if range or pseudorange can be measured from NDGPS beacon signal, it might be possible to construct an independent regional navigation system: The range from NDGPS beacon signal can be used as additional measurements to remove GPS shadow area and to improve accuracy and reliability of GPS. Furthermore, by adding Loran-C, a regional radio navigation system without GPS can be possible. In this paper, a feasibility study on the regional positioning system using NDGPS and LORAN-C are given. The results show that the NDGPS and LORAN-C can be used as a ground based regional navigation system if requirements such as synchronization of NDGPS network, dual coverage of NDGPS, navigation algorithm for both NDGPS and LORAN-C measurements and an efficient ASF compensation method are met.

Development of Real-time Mission Monitoring for the Korea Augmentation Satellite System

  • Daehee, Won;Koontack, Kim;Eunsung, Lee;Jungja, Kim;Youngjae, Song
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.12 no.1
    • /
    • pp.23-35
    • /
    • 2023
  • Korea Augmentation Satellite System (KASS) is a satellite-based augmentation system (SBAS) that provides approach procedure with vertical guidance-I (APV-I) level corrections and integrity information to Korea territory. KASS is used to monitor navigation performance in real-time, and this paper introduces the design, implementation, and verification process of mission monitoring (MIMO) in KASS. MIMO was developed in compliance with the Minimum Operational Performance Standards of the Radio Technical Commission for Aeronautics for Global Positioning System (GPS)/SBAS airborne equipment. In this study, the MIMO system was verified by comparing and analyzing the outputs of reference tools. Additionally, the definition and derivation method of accuracy, integrity, continuity, and availability subject to MIMO were examined. The internal and external interfaces and functions were then designed and implemented. The GPS data pre-processing was minimized during the implementation to evaluate the navigation performance experienced by general users. Subsequently, tests and verification methods were used to compare the obtained results based on reference tools. The test was performed using the KASS dataset, which included GPS and SBAS observations. The decoding performance of the developed MIMO was identical to that of the reference tools. Additionally, the navigation performance was verified by confirming the similarity in trends. As MIMO is a component of KASS used for real-time monitoring of the navigation performance of SBAS, the KASS operator can identify whether an abnormality exists in the navigation performance in real-time. Moreover, the preliminary identification of the abnormal point during the post-processing of data can improve operational efficiency.

Study of Alternative Navigation Systems for GNSS in South Korea

  • Yu, Dong-Hui
    • Journal of information and communication convergence engineering
    • /
    • v.8 no.5
    • /
    • pp.524-527
    • /
    • 2010
  • As the GPS(Global Positioning System) vulnerabilities were introduced, alternative systems to GPS backup have been studied for several years. Enhanced Loran(eLoran) as the worldwide ground-based supplementary radio navigation system was recommended as the cost effective alternative to GPS backup. Many efforts on adoption of eLoran as GPS backup have been presented. The US has been the leading role and announced that 70% enhancement for eLoran was established last year. However, the Obama administration cut off the eLoran budget on the fiscal year 2010 budget proposal while GAO's reports submitted that GPS service gap would be possible just some years later. Besides the US's condition, there are still many positive opinions on eLoran to GPS backup. This paper introduces the historical and technical aspects of eLoran and Korea's research topics.

A Design of Software Receiver for GNSS Signal Processing

  • Choi, Seung-Hyun;Kim, Jae-Hyun;Shin, Cheon-Sig;Lee, Sang-Uk;Kim, Jae-Hoon
    • Journal of Satellite, Information and Communications
    • /
    • v.2 no.2
    • /
    • pp.48-52
    • /
    • 2007
  • Recently, the research of GPS receiver which uses the Software-Defined Radio(SDR) technique is being actively proceeded instead of traditional hardware-based receiver. The software-based GPS receiver indicates that the signal acquisition and tracking treated by the hardware-based platform are processed as the software technique through a microprocessor. In this paper, GPS software receiver is designed by using SDR technique and then the signal acquisition, tracking, and the navigation message decoding parts are verified through the PC-based simulation. Moreover, the efficient algorithms are developed about the signal acquisition and tracking parts in order to obtain the accurate pseudorange. Finally, the pseudorange is calculated through the relative channel delay received through the different satellite of L1 frequency band. GPS software receiver proposed in this paper will be included in the element of GPS/Galileo complex system of development target and will provide not only the method that verifies the performance for Galileo Sensor Station standard but also usability by providing various debugging environments.

  • PDF

Analysis of Propagation Environment for Selecting R-Mode Reference and Integrity Station (R-Mode 보정국과 감시국 선정을 위한 전파환경 분석에 관한 연구)

  • Jeon, Joong-Sung;Jeong, Hae-Sang;Gug, Seung-Gi
    • Journal of Navigation and Port Research
    • /
    • v.45 no.1
    • /
    • pp.26-32
    • /
    • 2021
  • In ocean field, the spread of the Fourth Industrial Revolution based on information and communication technology requires high precision and stable PNT&D (Position, Navigation, Timing and Data). As the IMO (International Maritime Organization) and IALA (The International Association of Marine Aids to Navigation and Lighthouse Authorities) are requiring backup systems due to mitigate vulnerabilities and the increase of dependency on GNSS (Global Navigation Satellite System), Korea is conducting a research & development of R-Mode. An DGPS (Differentiate Global Positioning System) reference station that uses MF, an existing maritime infrastructure, and AIS (Automatic Identification System) base stations that use 34 integrity station and VHF will be utilized in this study to avoid redundant investment. Because there are radio shadow areas that display low signal levels in the west sea, the establishment of new R-Mode reference and integrity station will be intended to resolve problems regrading the radio shadow area. Because the frequency has a characteristic in that radio wave transmits well along the ground (water surface) in low frequency band, simulation and measurement were conducted therefore this paper to propose candidate sites for R-Mode reference and integrity station resulted through p wave's propagation characteristics analysis. Using this paper, R-Mode reference and integrity station can be established at appropriate locations to resolve radio shadow areas in other regions.

Conceptual Design of KASS Uplink Station (한국형 위성항법보강시스템(KASS) 위성통신국 기본 설계)

  • You, Moonhee;Sin, Cheon Sig
    • Journal of Satellite, Information and Communications
    • /
    • v.12 no.4
    • /
    • pp.72-77
    • /
    • 2017
  • The Satellite Based Augmentation System (SBAS) broadcasts to users integrity and correction information for Global Navigation Satellite System (GNSS) such as GPS and GLONASS using geostationary orbit (GEO) satellites. In accordance with the recommendation of the International Civilian Aeronautical Organization (ICAO) to introduce SBAS until 2025, a Korean SBAS system development / construction project is underway with the Ministry of Land, Transport and Maritime Affairs. Korea Augmentation Satellite System (KASS) is a high precision GPS correction system which is composed of KASS Reference Station (KRS), KASS Processing Station (KPS), KASS Uplink Station (KUS), KASS Control Station (KCS) and GEO satellites. In this paper, we provided the conceptual design of the KASS uplink station, which is composed of the Signal Generator Section (SGS) and the Radio-Frequency Section (RFS), and interface between the KASS ground sector and the GEO satellite.

Radio location algorithm in microcellular wide-band CDMA environment (마이크로 셀룰라 Wide-band CDMA 환경에서의 위치 추정 알고리즘)

  • Chang, Jin-Weon;Han, Il;Sung, Dan-Keun;Shin, Bung-Chul;Hong, Een-Kee
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.23 no.8
    • /
    • pp.2052-2063
    • /
    • 1998
  • Various full-scale radio location systems have been developed since ground-based radio navigation systems appeared during World War II, and more recently global positioning systems (GPS) have been widely used as a representative location system. In addition, radio location systems based on cellular systems are intensively being studied as cellular services become more and more popular. However, these studies have been focused mainly on macrocellular systems of which based stations are mutually synchronized. There has been no study about systems of which based stations are asynchronous. In this paper, we proposed two radio location algorithms in microcellular CDMA systems of which base stations are asychronous. The one is to estimate the position of a personal station at the center of rectangular shaped area which approximates the realistic common area. The other, as a method based on road map, is to first find candidate positions, the centers of roads pseudo-range-distant from the base station which the personal station belongs to and then is to estimate the position by monitoring the pilot signal strengths of neighboring base stations. We compare these two algorithms with three wide-spread algorithms through computer simulations and investigate interference effect on measuring pseudo ranges. The proposed algorithms require no recursive calculations and yield smaller position error than the existing algorithms because of less affection of non-line-of-signt propagation in microcellular environments.

  • PDF

Design, Development and Testing of the Modular Unmanned Surface Vehicle Platform for Marine Waste Detection

  • Vasilj, Josip;Stancic, Ivo;Grujic, Tamara;Music, Josip
    • Journal of Multimedia Information System
    • /
    • v.4 no.4
    • /
    • pp.195-204
    • /
    • 2017
  • Mobile robots are used for years as a valuable research and educational tool in form of available open-platform designs and Do-It-Yourself kits. Rapid development and costs reduction of Unmanned Air Vehicles (UAV) and ground based mobile robots in recent years allowed researchers to utilize them as an affordable research platform. Despite of recent developments in the area of ground and airborne robotics, only few examples of Unmanned Surface Vehicle (USV) platforms targeted for research purposes can be found. Aim of this paper is to present the development of open-design USV drone with integrated multi-level control hardware architecture. Proposed catamaran - type water surface drone enables direct control over wireless radio link, separate development of algorithms for optimal propulsion control, navigation and communication with the ground-based control station. Whole design is highly modular, where each component can be replaced or modified according to desired task, payload or environmental conditions. Developed USV is planned to be utilized as a part of the system for detection and identification of marine and lake waste. Cameras mounted to the USV would record sea or lake surfaces, and recorded video sequences and images would be processed by state-of-the-art computer vision and machine learning algorithms in order to identify and classify marine and lake waste.

LTE-Based Passive Bistatic Radar System for Detection of Ground-Moving Targets

  • Raja Abdullah, Raja Syamsul Azmir;Salah, Asem Ahmad;Ismail, Alyani;Hashim, Fazirulhisyam;Abdul Rashid, Nur Emileen;Abdul Aziz, Noor Hafizah
    • ETRI Journal
    • /
    • v.38 no.2
    • /
    • pp.302-313
    • /
    • 2016
  • Use of a passive bistatic radar (PBR) system in the surveillance or monitoring of an area has its advantages. For example, a PBR system is able to utilize any available signal of opportunity (for example, broadcasting, communication, or radio navigation signals) for the purposes of surveillance. With this in mind, there are potentially many research areas to be explored; in particular, the capability of signals from existing and future communication systems, such as 4G and 5G. Long-Term Evolution (LTE) is the world's most current communication system. Given this fact, this paper presents the latest feasibility studies and experimental results from using LTE signals in PBR applications. Details are provided about aspects such as signal characteristics, experimental configurations, and SNR studies. Six experimental scenarios are carried out to investigate the detection performance of our proposed system on ground-moving targets. The ability to detect is demonstrated through use of the cross-ambiguity function. The detection results suggest that LTE signals are suitable as a source signal for PBR.

Design of Performance Monitoring System for eLoran Time Synchronization Service (eLoran 시각동기 성능 모니터링 시스템 설계)

  • Seo, Kiyeol;Son, Pyo-Woong;Han, Younghoon;Park, Sang-Hyun;Lee, Jong-Cheol
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.6
    • /
    • pp.815-821
    • /
    • 2021
  • This study addresses on the design of performance monitoring system for the time synchronization service of the enhanced long-range navigation (eLoran) system, which has a representative ground-wave radio broadcast system capable of providing positioning, navigation, timing and data (PNT&D) services. The limitations of time-synchronized systems due to the signal vulnerabilities of the global navigation satellite system (GNSS) are explained, and the performance monitoring system for the eLoran timing service as a backup to the GNSS is proposed. The time synchronization service using eLoran system as well as system configurations and the user requirements in the differential Loran (dLoran) system are described to monitor the time synchronization performance. The results of the designed system are presented for long-term operation in the eLoran testbed environment. As the results of time performance monitoring, we were able to verify the time synchronization precision within 43.71 ns without corrections, 22.52 ns with corrections. Based on these results, the eLoran system can be utilized as a precise time synchronization source for GPS timing backup.