• Title/Summary/Keyword: Ground-based observation

Search Result 239, Processing Time 0.024 seconds

Detection of planetary signals in extremely weak central perturbation microlensing events via next-generation ground-based surveys

  • Chung, Sun-Ju;Lee, Chung-Uk
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.38 no.2
    • /
    • pp.72.1-72.1
    • /
    • 2013
  • Even though current microlensing follow-up observations focus on high-magnification events due to the high efficiency of planet detection, it is very difficult to do a confident detection of planets in high-magnification events with extremely weak central perturbations (i.e., the fractional deviation is ${\delta}{\leq}0.02$). For the confident detection of planets in the extremely weak central perturbation events, it is needed both the high cadence monitoring and the high photometric accuracy. A next-generation ground-based observation project, KMTNet (Korea Microlensing Telescope Network), satisfies both the conditions. Here we investigate how well planets in high-magnification events with extremely weak central perturbations are detected by KMTNet. First, we determine the probability of occurrence of events with ${\delta}{\leq}0.02$. From this, we find that for ${\leq}100M_E$ planets in the separation of $0.2AU{\leq}d{\leq}20AU$, events with ${\delta}{\leq}0.02$ occur with a frequency of more than 70%, in which d is the projected planet-star separation. Second, we estimate the efficiency of detecting planetary signals in the events with ${\delta}{\leq}0.02$ via KMTNet. We find that for main-sequence and subgiant source stars, ${\geq}1M_E$ planets can be detected more than 50% in a certain range that has the efficiency of ${\geq}10%$ and changes with the planet mass.

  • PDF

Recent International Activity of KASI for Space Weather Research

  • Cho, Kyung-Suk;Park, Young-Deuk;Lee, Jae-Jin;Bong, Su-Chan;Kim, Yeon-Han;Hwang, Jung-A;Choi, Seong-Hwan
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.35 no.1
    • /
    • pp.32.1-32.1
    • /
    • 2010
  • KASI's Solar and Space Weather Research Group (SSWRG) is actively involved in solar and space weather research. Since its inception, the SSWRG has been utilizing ground-based assets for its research, such as the Solar Flare Telescope, Solar Imaging Spectrograph, and Sunspot Telescope. In 2007 SSWRG initiated the Korean Space Weather Prediction Center (KSWPC). The goal of KSWPC is to extend the current ground observation capabilities, construct space weather database and networking, develop prediction models, and expand space weather research. Beginning in 2010, SSWRG plans to expand its research activities by collaborating with new international partners, continuing the development of space weather prediction models and forecast system, and phasing into developing and launching space-based assets. In this talk, we will report on KASI's recent activities of international collaborations with NASA for STEREO (Solar Terrestrial Relations Observatory), SDO (Solar Dynamic Observatory), and Radiation Belt Storm Probe (RBSP).

  • PDF

Development of a Natural Target-based Edge Analysis Method for NIIRS Estimation (NIIRS 추정을 위한 자연표적 기반의 에지분석기법 개발)

  • Kim, Jae-In;Kim, Tae-Jung
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.5
    • /
    • pp.587-599
    • /
    • 2011
  • As one measure of image interpretability, NIIRS(National Imagery Interpretability Rating Scale) has been used. Unlike MTF(Modulation Transfer Function), SNR(Signal to Noise Ratio), and GSD(Ground Sampling Distance), NIIRS can describe the quality of overall image at user's perspective. NIIRS is observed with human observation directly or estimated by edge analysis. For edge analysis specially manufactured artificial target is used commonly. This target, formed with a tarp of black and white patterns, is deployed on the ground and imaged by the satellite. Due to this, the artificial target-based method needs a big expense and can not be performed often. In this paper, we propose a new edge analysis method that enables to estimate NIIRS accurately. In this method, natural targets available in the image are used and characteristics of the target are considered. For assessment of the algorithm, various experiments were carried out. The results showed that our algorithm can be used as an alternative to the artificial target-based method.

Derivation of Geostationary Satellite Based Background Temperature and Its Validation with Ground Observation and Geographic Information (정지궤도 기상위성 기반의 지표면 배경온도장 구축 및 지상관측과 지리정보를 활용한 정확도 분석)

  • Choi, Dae Sung;Kim, Jae Hwan;Park, Hyungmin
    • Korean Journal of Remote Sensing
    • /
    • v.31 no.6
    • /
    • pp.583-598
    • /
    • 2015
  • This paper presents derivation of background temperature from geostationary satellite and its validation based on ground measurements and Geographic Information System (GIS) for future use in weather and surface heat variability. This study only focuses on daily and monthly brightness temperature in 2012. From the analysis of COMS Meteorological Data Processing System (CMDPS) data, we have found an error in cloud distribution of model, which used as a background temperature field, and in examining the spatial homogeneity. Excessive cloudy pixels were reconstructed by statistical reanalysis based on consistency of temperature measurement. The derived Brightness temperature has correlation of 0.95, bias of 0.66 K and RMSE of 4.88 K with ground station measurements. The relation between brightness temperature and both elevation and vegetated land cover were highly anti-correlated during warm season and daytime, but marginally correlated during cold season and nighttime. This result suggests that time varying emissivity data is required to derive land surface temperature.

A Study on the Adapting Process of Nursing Students to Problem Based Learning (간호학생들의 문제중심학습 적응과정에 관한 연구)

  • Yang, Bok-Sun
    • Journal of Korean Academy of Nursing
    • /
    • v.36 no.1
    • /
    • pp.25-36
    • /
    • 2006
  • Purpose: The purpose of the study was to identify the adaptation process to problem based learning(PBL) among nursing students who have experienced PBL classes for two years. Method: Data was collected from 11 nursing students with in-depth interviews and direct observation of their PBL experiences by a researcher who has been a facilitator for PBL class for 3years. Immediately after the interviews all of them were transcribed. It was analyzed by the Ground theory of Corbin and Strauss. Results: A derived core category was 'Acquiring PBL'. 4 stages of the acquiring process were derived and written in time sequence: chaos, confusion, beginning insight, and achievement stage. Conclusion: The results will not only expand understanding of the students for the facilitator and school which has adopted PBL but also provide information to develop an orientation program for PBL. Further research on the facilitator's role experiences is recommended.

Physical Characteristics of Small Space Objects at High Orbits Based on Optical Methods

  • El-Hameed, Afaf M. Abd;Attia, Gamal F.;Abdel-Aziz, Yehia
    • Journal of Astronomy and Space Sciences
    • /
    • v.34 no.1
    • /
    • pp.31-35
    • /
    • 2017
  • Optical observation is one of the most common techniques used for characterizing the physical properties of unknown objects and debris in space. This research presents measurements and properties of the new object 96019 from ground-based optical methods. Optical observations of this small object were performed using a charge-coupled device (CCD) camera and the Santel-500 telescope at the Zvenigorod Observatory. The orbital elements and physical properties of this object, such as area-to-mass ratio, have been determined. The results show that this small object has a low area-to-mass ratio, between 0.009 and $0.12m^2/kg$. The light curve of object 96019 is given: Over the time intervals, variations in brightness are analyzed and the maximum brightness was found to be 12.4 magnitudes. The observational results show that, this object brightens by about three magnitudes over a time span of three minutes. Based on these observations, the characteristics and physical properties of this object are discussed.

A Case Study on the Impact of Ground-based Glaciogenic Seeding on Winter Orographic Clouds at Daegwallyeong (겨울철 대관령지역 지형성 구름에 대한 지상기반 구름씨뿌리기 영향 사례연구)

  • Yang, Ha-Young;Chae, Sanghee;Jeong, Jin-Yim;Seo, Seong-Kyu;Park, Young-San;Kim, Baek-Jo
    • Journal of the Korean earth science society
    • /
    • v.36 no.4
    • /
    • pp.301-314
    • /
    • 2015
  • The purpose of this study was to investigate the impact of ground-based glaciogenic seeding on orographic clouds in the Daegwallyeong area on 13 March, 2013. The experiments was conducted by releasing silver iodide (AgI) under following conditions: surface temperature below $-4^{\circ}C$, wind direction between 45 and $130^{\circ}$, and wind speed less than $5ms^{-1}$. Two seeding rates, $38gh^{-1}$ (SR1) and $113gh^{-1}$ (SR2), were tested to obtain an appropriate AgI ratio for snowfall enhancement in the Daegwallyeong area. Numerical simulations were carried out by using the WRF (Weather Research and Forecast) model with AgI point-source module which predicted dispersion fields of AgI particles. The results indicated that the target orographic clouds contained adequate amount of supercooled liquid water and that the dispersion of AgI particles tended to move along the prevailing wind direction. To validate the seeding effects, the observation data from FM-120 and MPS as well as PARSIVEL disdrometer were analyzed. In this case study, glaciogenic seeding significantly increased the concentration of small ice particles below 1 mm in diameter. The observation results suggest that SR1 seeding be reasonable to use the ground-based seeding in the Daegwallyeong area.

Estimation of Satellite-based Spatial Evapotranspiration and Validation of Fluxtower Measurements by Eddy Covariance Method (인공위성 데이터 기반의 공간 증발산 산정 및 에디 공분산 기법에 의한 플럭스 타워 자료 검증)

  • Sur, Chan-Yang;Han, Seung-Jae;Lee, Jung-Hoon;Choi, Min-Ha
    • Korean Journal of Remote Sensing
    • /
    • v.28 no.4
    • /
    • pp.435-448
    • /
    • 2012
  • Evapotranspiration (ET) including evaporation from a land surface and transpiration from photosynthesis of vegetation is a sensitive hydrological factor with outer circumstances. Though both direct measurements with an evaporation pan and a lysimeter, and empirical methods using eddy covariance technique and the Bowen ratio have been widely used to observe ET accurately, they have a limitation that the observation can stand for the exact site, not for an area. In this study, remote sensing technique is adopted to compensate the limitation of ground observation using the Moderate Resolution Imaging Spectroradiometer (MODIS) multispectral sensor mounted on Terra satellite. We improved to evapotranspiration model based on remote sensing (Mu et al., 2007) and estimated Penman-Monteith evapotranspiration considering regional characteristics of Korea that was using only MODIS product. We validated evapotranspiration of Sulma (SMK)/Cheongmi (CFK) flux tower observation and calculation. The results showed high correlation coefficient as 0.69 and 0.74.

Detection and Classification of Major Aerosol Type Using the Himawari-8/AHI Observation Data (Himawari-8/AHI 관측자료를 이용한 주요 대기 에어로솔 탐지 및 분류 방법)

  • Lee, Kwon-Ho;Lee, Kyu-Tae
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.34 no.3
    • /
    • pp.493-507
    • /
    • 2018
  • Due to high spatio-temporal variability of amount and optical/microphysical properties of atmospheric aerosols, satellite-based observations have been demanded for spatiotemporal monitoring the major aerosols. Observations of the heavy aerosol episodes and determination on the dominant aerosol types from a geostationary satellite can provide a chance to prepare in advance for harmful aerosol episodes as it can repeatedly monitor the temporal evolution. A new geostationary observation sensor, namely the Advanced Himawari Imager (AHI), onboard the Himawari-8 platform, has been observing high spatial and temporal images at sixteen wavelengths from 2016. Using observed spectral visible reflectance and infrared brightness temperature (BT), the algorithm to find major aerosol type such as volcanic ash (VA), desert dust (DD), polluted aerosol (PA), and clean aerosol (CA), was developed. RGB color composite image shows dusty, hazy, and cloudy area then it can be applied for comparing aerosol detection product (ADP). The CALIPSO level 2 vertical feature mask (VFM) data and MODIS level 2 aerosol product are used to be compared with the Himawari-8/AHI ADP. The VFM products can deliver nearly coincident dataset, but not many match-ups can be returned due to presence of clouds and very narrow swath. From the case study, the percent correct (PC) values acquired from this comparisons are 0.76 for DD, 0.99 for PA, 0.87 for CA, respectively. The MODIS L2 Aerosol products can deliver nearly coincident dataset with many collocated locations over ocean and land. Increased accuracy values were acquired in Asian region as POD=0.96 over land and 0.69 over ocean, which were comparable to full disc region as POD=0.93 over land and 0.48 over ocean. The Himawari-8/AHI ADP algorithm is going to be improved continuously as well as the validation efforts will be processed by comparing the larger number of collocation data with another satellite or ground based observation data.

Monitoring Techniques for Active Volcanoes (활화산의 감시 기법에 대한 연구)

  • Yun, Sung-Hyo;Lee, Jeong-Hyun;Chang, Cheol-Woo
    • The Journal of the Petrological Society of Korea
    • /
    • v.23 no.2
    • /
    • pp.119-138
    • /
    • 2014
  • There are various ways to monitor active volcanoes, such as the method of observing the activity of a volcano with the naked eye, the method of referring to the past eruptive history based on the historic records and the method of monitoring volcanoes by using observation equipment. The most basic method from the observation equipment-using methods to monitor volcanoes is seismic monitoring. In addition to this, the ways to monitor volcanoes are as follows: resonance observation which may be effective to remove artificial noises from the seismic activities that are recorded in the seismograph, ground deformation by using precision leveling, electronic distance measurement, tiltmeter, GPS, and InSAR observation method, volcanic gas monitoring, hydrologic and meteorological monitoring, and other geophysical monitoring methods. These monitoring methods can make volcanic activities effectively monitored, determine the behavior of magmas in magma chambers and help predict the future volcanic eruptions more accurately and early warning, thus, minimize and mitigate the damage of volcanic hazards.