• Title/Summary/Keyword: Ground-based camera

Search Result 181, Processing Time 0.029 seconds

Ground-based Remote Sensing Technology for Precision Farming - Calibration of Image-based Data to Reflectance -

  • Shin B.S.;Zhang Q.;Han S.;Noh H.K.
    • Agricultural and Biosystems Engineering
    • /
    • v.6 no.1
    • /
    • pp.1-7
    • /
    • 2005
  • Assessing health condition of crop in the field is one of core operation in precision fanning. A sensing system was proposed to remotely detect the crop health condition in terms of SP AD readings directly related to chlorophyll contents of crop using a multispectral camera equipped on ground-based platform. Since the image taken by a camera was sensitive to changes in ambient light intensity, it was needed to convert gray scale image data into reflectance, an index to indicate the reflection characteristics of target crop. A reference reflectance panel consisting of four pieces of sub-panels with different reflectance was developed for a dynamic calibration, by which a calibration equation was updated for every crop image captured by the camera. The system performance was evaluated in a field by investigating the relationship between com canopy reflectance and SP AD values. The validation tests revealed that the com canopy reflectance induced from Green band in the multispectral camera had the most significant correlation with SPAD values $(r^2=0.75)$ and NIR band could be used to filter out unwanted non-crop features such as soil background and empty space in a crop canopy. This research confirmed that it was technically feasible to develop a ground-based remote sensing system for assessing crop health condition.

  • PDF

Ground Plane Detection Using Homography Matrix (호모그래피행렬을 이용한 노면검출)

  • Lee, Ki-Yong;Lee, Joon-Woong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.10
    • /
    • pp.983-988
    • /
    • 2011
  • This paper presents a robust method for ground plane detection in vision-based applications based on a monocular sequence of images with a non-stationary camera. The proposed method, which is based on the reliable estimation of the homography between two frames taken from the sequence, aims at designing a practical system to detect road surface from traffic scenes. The homography is computed using a feature matching approach, which often gives rise to inaccurate matches or undesirable matches from out of the ground plane. Hence, the proposed homography estimation minimizes the effects from erroneous feature matching by the evaluation of the difference between the predicted and the observed matrices. The method is successfully demonstrated for the detection of road surface performed on experiments to fill an information void area taken place from geometric transformation applied to captured images by an in-vehicle camera system.

Multiple Camera-Based Correspondence of Ground Foot for Human Motion Tracking (사람의 움직임 추적을 위한 다중 카메라 기반의 지면 위 발의 대응)

  • Seo, Dong-Wook;Chae, Hyun-Uk;Jo, Kang-Hyun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.8
    • /
    • pp.848-855
    • /
    • 2008
  • In this paper, we describe correspondence among multiple images taken by multiple cameras. The correspondence among multiple views is an interesting problem which often appears in the application like visual surveillance or gesture recognition system. We use the principal axis and the ground plane homography to estimate foot of human. The principal axis belongs to the subtracted silhouette-based region of human using subtraction of the predetermined multiple background models with current image which includes moving person. For the calculation of the ground plane homography, we use landmarks on the ground plane in 3D space. Thus the ground plane homography means the relation of two common points in different views. In the normal human being, the foot of human has an exactly same position in the 3D space and we represent it to the intersection in this paper. The intersection occurs when the principal axis in an image crosses to the transformed ground plane from other image. However the positions of the intersection are different depend on camera views. Therefore we construct the correspondence that means the relationship between the intersection in current image and the transformed intersection from other image by homography. Those correspondences should confirm within a short distance measuring in the top viewed plane. Thus, we track a person by these corresponding points on the ground plane. Experimental result shows the accuracy of the proposed algorithm has almost 90% of detecting person for tracking based on correspondence of intersections.

A Vision Based Pallet Measurement Method by Estimating 3D Direction of A Line Parallel to The Ground (지면 평행 직선의 3차원 방향 추정에 의한 비전 기반 파렛트 측정 방법)

  • Kim, Minhwan;Byun, Sungmin
    • Journal of Korea Multimedia Society
    • /
    • v.23 no.10
    • /
    • pp.1229-1235
    • /
    • 2020
  • A line parallel to the ground is frequently shown in our daily life, which enables us to guess its direction. Especially, such a guess tends to become clear when a vanishing line of the ground is shown together. In this paper, a vision based pallet measurement method is suggested, which uses a technique for estimating three-dimensional direction of a line parallel to the ground. The technique computes actually a vector heading to intersection of a given imaged line parallel to the ground and the ground vanishing line determined previously on calibrating a measurement camera. Through an experiment of measuring a real commercial pallet with various orientation and distance, we found that the technique could measure the orientation of the pallet correctly and accurately. The technique worked well even though an edge line available on the front plane of a pallet was almost parallel to the ground vanishing line.

A STUDY ON DEM GENE]RATON USING POLYNOMIAL CAMERA MODEL IN SATELLITE IMAGERY

  • Jeon, Seung-Hun;Kim, Sung-Chai;Lee, Heung-Jae;Lee, Kae-hei
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.518-523
    • /
    • 2002
  • Nowadays the Rational Function Model (RFM), an abstract sensor model, is substituting physical sensor models for highly complicated imaging geometry. But RFM is algorithm to be required many Ground Control Points (GCP). In case of RFM of the third order, At least forty GCP are required far RFM generation. The purpose of this study is to research more efficient algorithm on GCP and accurate algorithm similar to RFM. The Polynomial Camera Model is relatively accurate and requires a little GCP in comparisons of RFM. This paper introduces how to generate Polynomial Camera Model and fundamental algorithms for construction of 3-D topographic data using the Polynomial Camera Model information in the Kompsat stereo pair and describes how to generate the 3-D ground coordinates by manual matching. Finally we tried to extract height information for the whole image area with the stereo matching technique based on the correlation.

  • PDF

Dynamic Mosaic based Compression (동적 모자이크 기반의 압축)

  • 박동진;김동규;정영기
    • Proceedings of the IEEK Conference
    • /
    • 2003.07e
    • /
    • pp.1944-1947
    • /
    • 2003
  • In this paper, we propose a dynamic-based compression system by creating mosaic background and transmitting the change information. A dynamic mosaic of the background is progressively integrated in a single image using the camera motion information. For the camera motion estimation, we calculate affine motion parameters for each frame sequentially with respect to its previous frame. The camera motion is robustly estimated on the background by discriminating between background and foreground regions. The modified block-based motion estimation is used to separate the back-ground region.

  • PDF

Camera Rotation Calculation Based on Inner Product (벡터내적 기반 카메라 자세 추정)

  • Chon, Jae-Choon
    • Korean Journal of Remote Sensing
    • /
    • v.24 no.6
    • /
    • pp.641-644
    • /
    • 2008
  • In order to improve a camera rotation calculation based on the bundle adjustment in Chon's camera motion (Chon and Shankar, 2007, 2008), this paper introduces a method calculating the camera rotation. It estimates a unit vector in the optical axis of a camera through the angles between the optical axis and vectors passing a camera position and ground control points (GCP). The camera position is estimated by using the inner product method proposed by Chon. The horizontal and vertical unit vectors of the camera are determined by using Yakimovsky and Cunningham's camera model (CAHV) (1978).

An Estimation Method of Drivable Path for Unmanned Ground Vehicle Using Camera and 2D Laser Rangefinder on Unpaved Road (카메라와 2차원 레이저 거리센서를 활용한 비포장 도로 환경에서의 지상무인차량의 주행가능영역 추정 기법)

  • Ahn, Seong-Yong;Kim, Chong-Hui;Choe, Tok-Son;Park, Yong-Woon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.6
    • /
    • pp.993-1001
    • /
    • 2011
  • Unmanned ground vehicle for facility protection mostly uses model of territory for autonomous navigation. However, modeling of territory using several sensors is highly time consuming and sometimes inefficient for road application. Therefore, an estimation of drivable path based on features of road is required for high speed autonomous navigation on road. In this paper, an estimation method of drivable path using camera and 2D laser rangefinder is proposed. First, a vanishing point is estimated based on image data from CCD camera. Second, a road width is estimated based on range data from 2D laser rangefinder. Finally, the drivable path is estimated by fusing the vanishing point and the road width. The proposed method is tested on both well-structured road and unpaved road like cross-country situation.

An Analysis of Spectral Pattern for Detecting Pine Wilt Disease Using Ground-Based Hyperspectral Camera (지상용 초분광 카메라를 이용한 소나무재선충병 감염목 분광 특성 분석)

  • Lee, Jung Bin;Kim, Eun Sook;Lee, Seung Ho
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.5
    • /
    • pp.665-675
    • /
    • 2014
  • In this paper spectral characteristics and spectral patterns of pine wilt disease at different development stage were analyzed in Geoje-do where the disease has already spread. Ground-based hyperspectral imaging containing hundreds of wavelength band is feasible with continuous screening and monitoring of disease symptoms during pathogenesis. The research is based on an hyperspectral imaging of trees from infection phase to witherer phase using a ground based hyperspectral camera within the area of pine wilt disease outbreaks in Geojedo for the analysis of pine wilt disease. Hyperspectral imaging through hundreds of wavelength band is feasible with a ground based hyperspectral camera. In this research, we carried out wavelength band change analysis on trees from infection phase to witherer phase using ground based hyperspectral camera and comparative analysis with major vegetation indices such as Normalized Difference Vegetation Index (NDVI), Red Edge Normalized Difference Vegetation Index (reNDVI), Photochemical Reflectance Index (PRI) and Anthocyanin Reflectance Index 2 (ARI2). As a result, NDVI and reNDVI were analyzed to be effective for infection tree detection. The 688 nm section, in which withered trees and healthy trees reflected the most distinctions, was applied to reNDVI to judge the applicability of the section. According to the analysis result, the vegetation index applied including 688 nm showed the biggest change range by infection progress.

Pose Estimation of Ground Test Bed using Ceiling Landmark and Optical Flow Based on Single Camera/IMU Fusion (천정부착 랜드마크와 광류를 이용한 단일 카메라/관성 센서 융합 기반의 인공위성 지상시험장치의 위치 및 자세 추정)

  • Shin, Ok-Shik;Park, Chan-Gook
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.1
    • /
    • pp.54-61
    • /
    • 2012
  • In this paper, the pose estimation method for the satellite GTB (Ground Test Bed) using vision/MEMS IMU (Inertial Measurement Unit) integrated system is presented. The GTB for verifying a satellite system on the ground is similar to the mobile robot having thrusters and a reaction wheel as actuators and floating on the floor by compressed air. The EKF (Extended Kalman Filter) is also used for fusion of MEMS IMU and vision system that consists of a single camera and infrared LEDs that is ceiling landmarks. The fusion filter generally utilizes the position of feature points from the image as measurement. However, this method can cause position error due to the bias of MEMS IMU when the camera image is not obtained if the bias is not properly estimated through the filter. Therefore, it is proposed that the fusion method which uses the position of feature points and the velocity of the camera determined from optical flow of feature points. It is verified by experiments that the performance of the proposed method is robust to the bias of IMU compared to the method that uses only the position of feature points.