• Title/Summary/Keyword: Ground-Based Remote Sensing

Search Result 385, Processing Time 0.029 seconds

Local Surface Ground Temperature based on Energy Balance Model with the use of GRID/GIS, Remote Sensed and Meteorological Station Data

  • Ha, Kyung-Ja;Shin, Sun-Hee;Oh, Hyun-Mi;Kim, Jae-Hwan
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.63-65
    • /
    • 2003
  • The purpose of the study is to produce the surface ground temperature diagnostically using surface EBM with the use of GRID model in Geographic Information Systems (GIS). Certain characteristics have been analyzed for local slope effect, coastal effect and influence of high orographic aspect on the surface ground temperature. We present discussions on the meteorological responsibility for their temperature. The derived surface ground temperatures can be provided for comparison with those from satellite-based observ ation.

  • PDF

Investigation of Urban Environmental Quality Using an Integration of Satellite, Ground based measurement data over Seoul, Korea

  • Lee, Kwon-Ho;Wong, Man-Sing;Kim, Young-J.
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.3
    • /
    • pp.339-351
    • /
    • 2011
  • This study investigates the potentials of satellite, ground measurement data, and geo-spatial information within an urban area for the mapping of the Urban Environmental Quality (UEQ) parameters. The UEQ indicates a complex and various parameters resulting from both human and natural factors, which are greenness, climate, air pollution, the urban infrastructure, and etc. Multi-spectral remote sensing data from the Landsat ETM and TM sensors for the mapping of air pollution by the Haze Optimized Transform (HOT) technique, Urban Heat Island (UHO using the emissivity-fusion method in Seoul from 2000 to 2006 in fine resolution (30m) were analyzed for the estimation of UEQ index. Although the UHI values are similar ($8.4^{\circ}C{\sim}9.1^{\circ}C$) during these years, the spatial coverage of "hot" surface temperature (> $24^{\circ}C$) significantly increased from 2000 to 2006 due to the rapid urban development. Furthermore, high correlations between vegetation index and land surface temperature were achieved with a correlation coefficients of 0.85 (2000), 0.81 (2001), 0.84 (2002), and 0.89 (2006), respectively. It was found that the proposed method was successfully analyzed spatial structure of the UEQ and the scenarios of the best and worst areas within the city were also identified. Based on the quantifiable fine resolution satellite image parameters, UEQ can promote the understanding of the complex and dynamic factors controlling urban environment.

A Perspective on the Electromagnetic Imaging of Aircrafts (비행체의 전자파 영상화 기술동향)

  • 윤용수;이재천
    • Korean Journal of Remote Sensing
    • /
    • v.15 no.3
    • /
    • pp.167-175
    • /
    • 1999
  • So far, the remote sensing technology has widely been used in a variety of application areas such as military, medical imaging, environment, geology and so forth. The microwave remote sensing uses the wavelengths ranging from around one centimeter up to a few tens of centimeters and is known to be very effective regardless of the weather conditions and the day/night time as compared with the reflective InfraRed (IR) remote sensing or the thermal IR remote sensing. There are three generic modes of synthetic aperture radar imaging systems depending on its application, that is, stripmap mode, spotlight mode, or inverse mode. In this article we focus on the issue of imaging of flying aircrafts for the inverse mode of a ground - based, fixed radar with moving objects. The imaging of flying aircrafts is considered to be an important step for the automatic target recognition systems, and therefore a great deal of efforts have recently been made on the subject. Here we review the three representative methods including the Fourier transform processing, the time - frequency processing, and the reconstruction from the projection. Some relative merits and drawbacks are also discussed.

Mapping Vegetation Volume in Urban Environments by Fusing LiDAR and Multispectral Data

  • Jung, Jinha;Pijanowski, Bryan
    • Korean Journal of Remote Sensing
    • /
    • v.28 no.6
    • /
    • pp.661-670
    • /
    • 2012
  • Urban forests provide great ecosystem services to population in metropolitan areas even though they occupy little green space in a huge gray landscape. Unfortunately, urbanization inherently results in threatening the green infrastructure, and the recent urbanization trends drew great attention of scientists and policy makers on how to preserve or restore green infrastructure in metropolitan area. For this reason, mapping the spatial distribution of the green infrastructure is important in urban environments since the resulting map helps us identify hot green spots and set up long term plan on how to preserve or restore green infrastructure in urban environments. As a preliminary step for mapping green infrastructure utilizing multi-source remote sensing data in urban environments, the objective of this study is to map vegetation volume by fusing LiDAR and multispectral data in urban environments. Multispectral imageries are used to identify the two dimensional distribution of green infrastructure, while LiDAR data are utilized to characterize the vertical structure of the identified green structure. Vegetation volume was calculated over the metropolitan Chicago city area, and the vegetation volume was summarized over 16 NLCD classes. The experimental results indicated that vegetation volume varies greatly even in the same land cover class, and traditional land cover map based above ground biomass estimation approach may introduce bias in the estimation results.

A STUDY OF LOW-LEVEL BOUNDARY-LAYER TEMPERATURE INVERSION EVENTS IN TAIWAN

  • Liou, Yuei-An;Yan, Shiang-Kun;Wang, Kuo-Chung
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.320-323
    • /
    • 2006
  • Temperature inversion may cause air pollution problems because air pollutants cannot be dissipated through vertical motion of the atmosphere and are accumulated near the surface. The air quality is worsen gradually if an inversion event lasts for a long time. An inversion event is defined as consecutive temperature profiles with occurrence of the temperature inversion condition. In this paper, temperature inversion events over three major cities on Taiwan are analyzed. They are measured by ground-based microwave radiometers installed in Taipei, Taichung, and Kaohsiung from 2002 to 2004 by the Environment Protection Administration (EPA) of Taiwan. Characteristics of temperature inversion events at the three cities are extracted using different classification methods.

  • PDF

Features of Yellow Sand in SeaWiFS Data and Their Implication for Atmospheric Correction

  • Sohn, Byung-Ju;Hwang, Seok-Gyu
    • Proceedings of the KSRS Conference
    • /
    • 1998.09a
    • /
    • pp.404-408
    • /
    • 1998
  • Yellow sand event has been studied using SeaWiFS data in order to examine the aerosol optical characteristics in the Yellow Sea and their influences on the atmospheric correction for the ocean color remote sensing. Two SeaWiFS images of April 18 and April 25, 1998, representing Yellow Sand event and clear-sky case respectively, are selected for emphasizing the impact of high aerosol concentration on the ocean color remote sensing. It was shown that NASA's standard atmospheric correction algorithm treats yellow sand area as either too high radiance or cloud area, in which ocean color information is not generated. SeaWiFS aerosol optical thickness is compared with nearby ground-based sun photometer measurements and also is compared with radiative transfer simulation in conjunction with yellow sand model, examining the performance of NASA's atmospheric correction algorithm in case of the heavy dust event.

  • PDF

Applicability Assessment of the Expanded Waste Glass Material as Planting Basis Using Ground-Based Remote Sensing

  • Hamamoto, R.;Gotoh, K.;Ikio, D.
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.546-548
    • /
    • 2003
  • The expanded waste glass material is one of the recycling materials. We investigated whether the expanded waste glass material is useful as planting basis and effective as heat insulation. We examined the difference of the materials by using vegetation index and temperature. The combination of the improved soils and the improved glasses marked higher vegetation index than other mixture materials. Moreover, this combination material is excellent than other ones to heat insulation. Therefore, it suggests that the expanded waste glass material has high potential to be used as a material for planting basis.

  • PDF

Assessing Sea Surface Temperature in the Yellow Sea Using Satellite Remote Sensing Data

  • Lee, Kyoo-seock;Kang, Hee-Sook
    • Korean Journal of Remote Sensing
    • /
    • v.6 no.1
    • /
    • pp.39-47
    • /
    • 1990
  • The first Marine Observation Satellite(MOS) was launched by National Space Development Agency of Japan on February 19, 1987, and it is equipped with three sensons covering visible, infrared, and microwave region. One of them is Visible and Thermal Infrared Radiometer(VTIR) whose main objective is to detect the Sea Surface Temperature(SST). The objective of this study was to process the MOS data using Cray-2 supercomputer, and to assess the SST in the Yellow Sea. In order to implement this objective, the linear regression model between the ground truth data and the corresponding digital number of VTIR in MOS was used to establish the relationship. After testing the significance of the regression model, the SST map of the whole Yellow Sea was derived based on the model. The digital SST map representing the study area showed certain pattern about the SST of Yellow Sea in March and April. In conclusion, the VTIR data in MOS is also useful in investigating SST which provides the information about the Yellow Sea water current in the spring.

Segment-based Image Classification of Multisensor Images

  • Lee, Sang-Hoon
    • Korean Journal of Remote Sensing
    • /
    • v.28 no.6
    • /
    • pp.611-622
    • /
    • 2012
  • This study proposed two multisensor fusion methods for segment-based image classification utilizing a region-growing segmentation. The proposed algorithms employ a Gaussian-PDF measure and an evidential measure respectively. In remote sensing application, segment-based approaches are used to extract more explicit information on spatial structure compared to pixel-based methods. Data from a single sensor may be insufficient to provide accurate description of a ground scene in image classification. Due to the redundant and complementary nature of multisensor data, a combination of information from multiple sensors can make reduce classification error rate. The Gaussian-PDF method defines a regional measure as the PDF average of pixels belonging to the region, and assigns a region into a class associated with the maximum of regional measure. The evidential fusion method uses two measures of plausibility and belief, which are derived from a mass function of the Beta distribution for the basic probability assignment of every hypothesis about region classes. The proposed methods were applied to the SPOT XS and ENVISAT data, which were acquired over Iksan area of of Korean peninsula. The experiment results showed that the segment-based method of evidential measure is greatly effective on improving the classification via multisensor fusion.