• 제목/요약/키워드: Ground vibrations

검색결과 166건 처리시간 0.027초

항타 진동이 송전탑 기초에 미치는 영향 연구 (The Influence of Ground Vibration Caused by Pile Driving on Power Line Tower Foundation)

  • 박정봉
    • 화약ㆍ발파
    • /
    • 제27권2호
    • /
    • pp.42-47
    • /
    • 2009
  • 파일 항타, 발파 등의 공사시 발생하는 진동은 근거리에 위치한 송전탑 기초 및 철탑에 영향을 미치게 된다. 일반적으로 진동은 이격거리에 따라 전파특성이 다르게 나타나는데, 송전탑과 진동원의 이격거리에 따라 진동을 제어할 수 있는 공법으로 공사를 수행해야 한다. 본 연구에서는 송전탑 기초와 기초 주변 지반에 대하여 항타시 진동을 측정하였으며, 항타시 발생되는 진동이 기초지반과 송전탑 기초에 전파되는 특성을 지반의 탁월 주파수와 송전탑 탁월주파수와의 관계를 통하여 고찰하였다.

Design-oriented acceleration response spectrum for ground vibrations caused by collapse of large-scale cooling towers in NPPs

  • Lin, Feng;Jiang, Wenming
    • Nuclear Engineering and Technology
    • /
    • 제50권8호
    • /
    • pp.1402-1411
    • /
    • 2018
  • Nuclear-related facilities can be detrimentally affected by ground vibrations due to the collapse of adjacent cooling towers in nuclear power plants. To reduce this hazard risk, a design-oriented acceleration response spectrum (ARS) was proposed to predict the dynamic responses of nuclear-related facilities subjected to ground vibrations. For this purpose, 20 computational cases were performed based on cooling tower-soil numerical models developed in previous studies. This resulted in about 2664 ground vibration records to build a basic database and five complementary databases with consideration of primary factors that influence ground vibrations. Afterwards, these databases were applied to generate the design-oriented ARS using a response spectrum analysis approach. The proposed design-oriented ARS covers a wide range of natural periods up to 6 s and consists of an ascending portion, a plateau, and two connected descending portions. Spectral parameters were formulated based on statistical analysis. The spectrum was verified by comparing the representative acceleration magnitudes obtained from the design-oriented ARS with those from computational cases using cooling tower-soil numerical models with reasonable consistency.

Parametric study on the impact of traffic-induced vibrations on residential structures in Istanbul, Turkey

  • A. Yesilyurt;M.R. Akram;A. Can Zulfikar;H. Alcik
    • Structural Monitoring and Maintenance
    • /
    • 제11권2호
    • /
    • pp.87-100
    • /
    • 2024
  • Traffic-induced vibrations (TIVs) possess the potential to induce structural damage in both historical and critical edifices. Recent investigations have underscored the adverse impact of TIVs within buildings, manifesting as a deleterious influence on the quality of life and operational efficiency of occupants. Consequently, these studies have dichotomized TIVs into two primary limit categories: the threshold for vibrations capable of causing structural damage and the limit values associated with human comfort. In this current research endeavor, an exhaustive analysis of peak ground acceleration (PGA), peak ground velocity (PGV), peak ground displacement (PGD), and the frequency spectrum of ground motions originating from diverse traffic sources has been conducted. Furthermore, the detrimental repercussions of these vibrations on structures, gauged through the assessment of the peak particle velocity (PPV) parameter, have been systematically evaluated. The findings of this study elucidate that TIVs within the examined structures do not attain magnitudes conducive to structural compromise; however, the levels surpassing human comfort limits are evident, attributable to specific sources and distances. Moreover, this investigation sheds light on the absence of comprehensive criteria and guidelines pertaining to the assessment of TIVs in structures within the Turkish Building Seismic Design Code 2018. It seeks to raise awareness among building constructors about the critical importance of addressing this issue, emphasizing the imperative for guidelines in mitigating the impact of TIVs on both structural integrity and human well-being.

Ground vibrations due to underground trains considering soil-tunnel interaction

  • Yang, Y.B.;Hung, H.H.;Hsu, L.C.
    • Interaction and multiscale mechanics
    • /
    • 제1권1호
    • /
    • pp.157-175
    • /
    • 2008
  • A brief review of the research works on ground vibrations caused by trains moving in underground tunnels is first given. Then, the finite/infinite element approach for simulating the soil-tunnel interaction system with semi-infinite domain is summarized. The tunnel is assumed to be embedded in a homogeneous half-space or stratified soil medium. The train moving underground is modeled as an infinite harmonic line load. Factors considered in the parametric studies include the soil stratum depth, damping ratio and shear modulus of the soil with or without tunnel, and the thickness of the tunnel lining. As far as ground vibration is concerned, the existence of a concrete tunnel may somewhat compensate for the loss due to excavation of the tunnel. For a soil stratum resting on a bedrock, the resonance peak and frequency of the ground vibrations caused by the underground load can be rather accurately predicted by ignoring the existence of the tunnel. Other important findings drawn from the parametric studies are given in the conclusion.

인공진동의 크기가 양생콘크리트의 강도와 물성에 미치는 영향 (Effects of Artificial Vibrations on Strength and Physical Properties of Curing Concrete)

  • 임한욱;정동호;이상은
    • 터널과지하공간
    • /
    • 제4권1호
    • /
    • pp.31-37
    • /
    • 1994
  • The effects of blasting and ground vibratons on curing concrete have not been well studied. As a results unrealistic and costly ground vibration constraints have been placed on blasting and piling when it occurs in the vicinity of curing concrete. To study the effects of ground vibrations, a shaking table was made to produce peak particle velocities in the nearly same frequency range as found in construction blasting. Concrete blocks of 33.3X27.7X16.2cm were molded and placed on the shaking table. Different sets of concrete blocks were subjected to peak vibrations of 0.25, 0.5, 1.0, 5.0 and 10cm/sec. The impulses were applied at two hour intervals for thirty seconds. Along with unvibrated concrete blocks, the vibrated concrete samples with 60.3mm in diameters were measured for elastic moduli, sonic velocity, tensile and uniaxial compressive strength. Test results showed that the vibrations in curing concrete generally have effects on the uniaxial compressive strength or physical properties of the concrete.

  • PDF

저진동 파일시공법에 따른 지반진동 응답 예측을 위한 실험적 연구 (Experimental Study for Prediction of Ground Vibration Responses by the Low-vibration Pile Driving Methods)

  • 강성후;정석규;박선준
    • 한국소음진동공학회논문집
    • /
    • 제21권4호
    • /
    • pp.299-306
    • /
    • 2011
  • This study investigated the SIP-method as a low-vibration, low-noise engineering method. The ground vibrations caused by the SIP-method were measured and analyzed in each step. From the analysis results, quantitative ground vibration values and reliable vibration estimation equations were proposed. Furthermore, the ground vibrations caused by the SIP-method were compared with the ground vibrations caused by other methods presented by existing studies. Based on the vibration estimation equation with 50 % reliability, the ground vibration values by the SIP-method at the distance of 10~150 m corresponded to 17~57 % of the ground vibration values by the equation proposed by Attewell & Famer, and 14~96 % of the ground vibration values by the equation proposed by Prof. Park in his study using a diesel drop hammer. These results showed that the ground vibration reduction effect of the SIP-method was higher those of other general engineering methods. Finally, the permissible scope of work using the SIP-method which meets the domestic vibration standards was presented.

In-situ measurement of railway-traffic induced vibrations nearby the liquid-storage tank

  • Goktepe, Fatih;Kuyuk, Huseyin S.;Celebi, Erkan
    • Earthquakes and Structures
    • /
    • 제12권5호
    • /
    • pp.583-589
    • /
    • 2017
  • In this study, result of a field investigation of railway traffic-induced vibrations is provided to examine acceptability levels of ground vibration and to evaluate the serviceability of a liquid-storage tank. Free field attenuation of the amplitudes as a function of distance is derived by six accelerometers and compared with a well-known half-space Bornitz's analytical solution which considers the loss of the amplitude of waves due to geometrical damping and material damping of Rayleigh. Bornitz's solution tends to overlap vertical free field vibration compared with in-situ measured records. The vibrations of the liquid-storage tank were compared with the USA, Federal Transportation Railroad Administration (FTA) criteria for acceptable ground-borne vibrations and with the criteria in DIN 4150-3 German standard. Comparing the thresholds stated in DIN 4150-3, absolute peak particle velocities are within the safe limits, however according to FTA velocity level at the top of the water tank exceeds the allowable limits. Furthermore, it is intended to indicate experimentally the effect of the kinematic interaction caused by the foundation of the structure on the free-field vibrations.

환경진동의 지반내 전파특성과 차단에 관한 원심모형실험 (Centrifuge Simulation of Wave Propagation and Isolation Method)

  • 이강일;일하부치;김찬기;김태훈;실진성
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2004년도 춘계학술발표회
    • /
    • pp.738-745
    • /
    • 2004
  • There are a number of ways to reduce the ground vibrations, one of which is by installing underground walls. Model tests for ground vibration have been conducted in recent years, but limited attention has been paid to underground wall which can reduce high vibrations. Up to date, only barriers have been actually installed in dry sand because of many unknown factors subsisting on the behavior of the ground. The characteristics of vibration sources, ground conditions and wall barriers have not been well understood yet, therefore centrifugal modeling was adopted to examine all these characteristics. This paper describes a ball dropping system, which can generate a pulse wave propagation through soil mass, and the test results show the effectiveness of underground wall barrier in reducing mechanical vibration.

  • PDF

폭약의 기폭위치에 따른 지반진동 예측 (Prediction of Ground Vibration According to the Priming Location)

  • 김승은;류복현;강추원;고진석
    • 화약ㆍ발파
    • /
    • 제28권2호
    • /
    • pp.69-75
    • /
    • 2010
  • 도심지 부근에서 이루어지는 암반 굴착작업의 증가에 따라 민원제기가 급증하고 있다. 이로 인해 발파설계시 안정성을 가장 우선적으로 고려하며, 그중에서도 지반진동을 제어하기 위한 노력이 필요하다. 본 연구에서는 발파진동의 전파특성을 결정하는 여러 인자들 중 발파조건인 기폭방법과 폭약의 종류에 따른 지반진동의 전파 특성을 알아보았다. 지반진동은 폭속이 작은 폭약에서 더 크게 나타났지만 진폭의 감쇠가 커서 진동이 멀리 전파되지 않는 특징이 나타났다. 기폭위치별 회귀분석 결과 중간기폭이 평균적인 진동수준이 가장 크게 나타났지만 감쇠가 커서 진동이 멀리 전파되지 않았다. 역기폭은 중간기폭보다 진동 수준은 낮았으나 감쇠가 작아서 진동이 멀리 전파하는 특징이 나타났다.

Dynamic characteristics of cable vibrations in a steel cable-stayed bridge using nonlinear enhanced MECS approach

  • Wu, Qingxiong;Takahashi, Kazuo;Chen, Baochun
    • Structural Engineering and Mechanics
    • /
    • 제30권1호
    • /
    • pp.37-66
    • /
    • 2008
  • This paper focuses on the nonlinear vibrations of stay cables and evaluates the dynamic characteristics of stay cables by using the nonlinear enhanced MECS approach and the approximate approach. The nonlinear enhanced MECS approach is that both the girder-tower vibrations and the cable vibrations including parametric cable vibrations are simultaneously considered in the numerical analysis of cable-stayed bridges. Cable finite element method is used to simulate the responses including the parametric vibrations of stay cables. The approximate approach is based on the assumption that cable vibrations have a small effect on girder-tower vibrations, and analyzes the local cable vibrations after obtaining the girder-tower responses. Under the periodic excitations or the moderate ground motion, the differences of the responses of stay cables between these two approaches are evaluated in detail. The effect of cable vibrations on the girder and towers are also discussed. As a result, the dynamic characteristics of the parametric vibrations in stay cables can be evaluated by using the approximate approach or the nonlinear enhanced MECS approach. Since the different axial force fluctuant of stay cables in both ends of one girder causes the difference response values between two approach, it had better use the nonlinear enhanced MECS approach to perform the dynamic analyses of cable-stayed bridges.