• Title/Summary/Keyword: Ground structure

Search Result 2,995, Processing Time 0.037 seconds

Damage Prediction of Reinforced Concrete Structures due to Ground Motion (지반진동으로 인한 R/C 구조물의 손상에 관한 연구)

  • Rhim, Hong-Chul;Kim, Ji-Yeon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.6 no.2
    • /
    • pp.195-202
    • /
    • 2002
  • Urbanization and development of industry makes people concerned about quality of circumstances. Problems of vibration are on the rise. Vibration makes inhabitants feel unpleasant and involves structural damage. The purpose of this study is to assess damage of reinforced concrete structures due to ground motions as the parameters of frequency, duration time and aspect ratio of structures are changed. Ground motions were modeled as sine waves. To compare sine waves with real ground motions, two cases are selected; one is blast loading case and the other is earthquake loading. It was intended to provide means to assess R/C structure damage due to ground motions.

A Study on a New Balun Structure with Vertically Periodic Defected Ground Structure (수직 결함 기저면 구조를 이용한 새로운 발룬 구조 연구)

  • Kim, Kwi-Soo;Kim, Chul-Soo;Song, In-Sang;Lim, Jong-Sik;Ahn, Dal
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.7
    • /
    • pp.785-790
    • /
    • 2008
  • In this paper, a new balun is proposed. This proposed balun has a DGS(Defected Ground Structure) pattern on the ground plane. The transmission-line is transformed by microstrip-to-slotline transition. DGS pattern on the ground plane and transition of the lines can be easily made a property of the balun. Resonance frequency of the DGS leads to operating frequency of the balun. Also the transition produces $180^{\circ}$ out-of-phase between two output ports without additional transmission line. In this paper, a new balun with VPDGS(Vertically Periodic Defected Ground Structure) effectively lower the operating frequency. To validate the proposed design method, the new balun is designed, fabricated and measured at 2 GHz.

Humidity Sensor Using Microwave Sensor Based on Microstrip Defected Ground Structure Coated with Polyvinyl Alcohol (폴리비닐알코올로 코팅된 마이크로스트립 결함 접지 구조 기반 마이크로파 센서를 이용한 습도 센서)

  • Yeo, Junho;Kwon, Younghwan
    • Journal of Advanced Navigation Technology
    • /
    • v.24 no.6
    • /
    • pp.627-632
    • /
    • 2020
  • In this paper, we have studied a development of a humidity sensor using a microwave sensor based on a microstrip defected ground structure coated with polyvinyl alcohol. A high-sensitivity microwave sensor, which is sensitive to the changes in the permittivity of the material under test, is designed by adding an interdigital capacitor-shaped defected ground structure to the ground plane of a microstrip line. Polyvinyl alcohol, a polymer material whose permittivity varies depending on humidity, is coated with a thin thickness on the defected ground structure of the proposed microwave sensor, and the changes in the resonance frequency and magnitude of the transmission coefficient for the microwave sensor according to humidity are measured. When relative humidity increases from 40% to 80% in 10% increments at a temperature of 25 degrees using a temperature/humidity chamber, the resonant frequency of the transmission coefficient decreases from 1.475 GHz to 1.449 GHz, and the magnitude is increased from -32.90 dB to -25.67 dB.

Spatial Variation Characteristics of Seismic Motions through Analysis of Earthquake Records at Fukushima Nuclear Power Plant (후쿠시마 원자력발전소 지진 계측 기록 분석을 통한 지진파의 공간적 변화 특성 평가)

  • Ha, Jeong-Gon;Kim, Mi Rae;Kim, Min Kyu
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.25 no.5
    • /
    • pp.223-232
    • /
    • 2021
  • The spatial variation characteristics of seismic motions at the nuclear power plant's site and structures were analyzed using earthquake records obtained at the Fukushima nuclear power plant during the Great East Japan Earthquake. The ground responses amplified as they approached the soil surface from the lower rock surface, and the amplification occurred intensively at about 50 m near the ground. Due to the soil layer's nonlinear characteristics caused by the strong seismic motion, the ground's natural frequency derived from the response spectrum ratio appeared to be smaller than that calculated from the shear wave velocity profile. The spatial variation of the peak ground acceleration at the ground surface of the power plant site showed a significant difference of about 0.6 g at the maximum. As a result of comparing the response spectrums at the basement of the structure with the design response spectrum, there was a large variability by each power plant unit. The difference was more significant in the Fukushima Daiichi site record, which showed larger peak ground acceleration at the surface. The earthquake motions input to the basement of the structure amplified according to the structure's height. The natural frequency obtained from the recorded results was lower than that indicated in the previous research. Also, the floor response spectrum change according to the location at the same height was investigated. The vertical response on the foundation surface showed a significant difference in spectral acceleration depending on the location. The amplified response in the structure showed a different variability depending on the type of structure and the target frequency.

Development of a Network Expert System for Safety Analysis of Structures Adjacent to Tunnel Excavation Sites (터널굴착 현장에 인접한 지상구조물의 안전성 평가용 전문가 시스템의 개발)

  • 배규진;김창용;신휴성;홍성환
    • Explosives and Blasting
    • /
    • v.17 no.4
    • /
    • pp.67-88
    • /
    • 1999
  • Ground settlements induced by tunnel excavation cause the foundations of the neighboring superstructures to deform. An expert system called NESASS was developed to analyze the structural safety of such superstructures. NESASS predicts the trend of ground settlements to be resulted from tunnel excavation and carries out a safety analysis for superstructures on the basis of the predicted ground settlements. Using neural network techniques, NESASS learns a data base consisting of the measured ground settlements collected from numerous actual fields and infers a settlement trend at the field of interest. NESASS calculates the magnitudes of angular distortion, deflection ratio, and differential settlement of the structure and, in turn, determines the safety of the structure. In addition, NESASS predicts the patterns of cracks to be formed on the structure using Dulacskas model for crack evaluation. In this study, the ground settlements measured from the Seoul subway construction sites were collected and sorted with respect to the major factors influencing ground settlement. Subsequently, a database of ground settlement due to tunnel excavation was built. A parametric study was performed to verify the reliability of the proposed neural network structure. A comparison of the ground settlement trends predicted by NESASS with the measured ones indicates that NESASS leads to reasonable predictions. An examples is presented in this paper where NESASS is used to evaluate the safety of a structure subject to deformation due to tunnel excavation near to the structure.

  • PDF

Structural Layout Optimization Strategy Considering Assemblage (조립성을 고려한 위상 최적설계법 개발)

  • Choi Guk-Jin;Kim Myung-Jin;Kim Yoon-Young;Jang Gang-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.5 s.248
    • /
    • pp.512-519
    • /
    • 2006
  • In the ground-structure-based topology optimization, beam elements are regarded to be rigidly connected to each other, and joints are assumed to have infinite stiffness. Thus the optimized topology of a structure is obtained according to the assumption of no joint effect, and the resulting structure should be manufactured in one piece if the joint effect is to be excluded as much as possible. The underlying problems are that 1) the performance of the structure might be seriously decreased if the members of the structure are connected through welding or bolting, not manufactured in one piece, and 2) the topology of the structure will be changed if the joint effect is taken into account. In the paper, the assemblage issue is considered on topology optimization, and a new formulation based on the joint stiffness-varied ground beam structure is developed. Joints of a beam structure are modeled by elastic spring elements whose stiffnesses are controlled by design variables during the optimization.

Visual Measurement of Pile Movement for the Foundation Work using a High-Speed Line-Scan

  • Lim, Mee-Seub;Lim, Joon-Hong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1802-1807
    • /
    • 2004
  • When a construction company builds a high structure, many piles should be driven into the ground by a hammer whose weight is 7,000 Kg in order to make the ground under the structure safe and strong. So, it is essential to determine whether a pile is penetrated into the ground enough to support the weight of the structure since ground characteristics at different locations are different each other. This paper proposes a visual measurement system for pile rebound and penetration movement including vibration using a high-speed line-scan camera and a specially designed mark to recognize two-dimensional motion parameters of the mark using only a line-scan camera. A mark stacking white and black right-angled triangles is used for the measurement, and movement information for vertical distance, horizontal distance and rotational angle is determined simultaneously

  • PDF

Highly Miniaturized On-Chip $180^{\circ}$ Hybrid Employing Periodic Ground Strip Structure for Application to Silicon RFIC

  • Yun, Young
    • ETRI Journal
    • /
    • v.33 no.1
    • /
    • pp.13-17
    • /
    • 2011
  • A highly miniaturized on-chip $180^{\circ}$ hybrid employing periodic ground strip structure (PGSS) was realized on a silicon radio frequency integrated circuit. The PGSS was placed at the interface between $SiO_2$ film and silicon substrate, and it was electrically connected to top-side ground planes through the contacts. Owing to the short wavelength characteristic of the transmission line employing the PGSS, the on-chip $180^{\circ}$ hybrid was highly miniaturized. Concretely, the on-chip $180^{\circ}$ hybrid exhibited good radio frequency performances from 37 GHz to 55 GHz, and it was 0.325 $mm^2$, which is 19.3% of a conventional $180^{\circ}$ hybrid. The miniaturization technique proposed in this work can be also used in other fields including compound semiconducting devices, such as high electron mobility transistors, diamond field effect transistors, and light emitting diodes.

Micro-Structure Change Characteristics of Clay Suffered Freeze and Thaw Hysteresis (동결·융해 이력을 받은 점성토의 미시적 구조 변화 특성)

  • Kodaka, Takeshi;Yeon, Kyu-Seok;Kim, Yong-Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.52 no.3
    • /
    • pp.89-95
    • /
    • 2010
  • There is the freezing method as one of the ground improvement methods for excavating an underground tunnel, and due to its improved reliability, recently construction cases of applying this method into sandy soil grounds as well as cohesive soil grounds of cities have been reported. But, applying the freezing method into cohesive soil grounds could bring concerns of the expansion of the whole ground and the settlements from thawing of ground. In this study, the deformation strength characteristics of cohesive soil which received freezing and thawing hysteresis were examined using the sample collected from the site of cohesive soil ground applied with the freezing method and its structural characteristics were analyzed using an electronic microscope. And, the test with cohesive soil reconstituted from cohesive soil which received freezing and thawing hysteresis was carried out and its result was analyzed comparatively. The result of this test showed that the structure of natural clay was significantly changed due to freezing and thawing hysteresis.

Dynamic responses of structures with sliding base

  • Tsai, Jiin-Song;Wang, Wen-Ching
    • Structural Engineering and Mechanics
    • /
    • v.6 no.1
    • /
    • pp.63-76
    • /
    • 1998
  • This paper presents dynamic responses of structures with sliding base which limits the translation of external loads from ground excitation. A discrete element model based on the discontinuous deformation analysis method is proposed to study this sliding boundary problem. The sliding base is simulated using sets of fictitious contact springs along the sliding interface. The set of contact spring is to translate friction force from ground to superstructure. Validity of the proposed model is examined by the closed-form solutions of an idealized mass-spring structural model subjected to harmonic ground excitation. This model is also applied to a problem of a three-story structural model subjected to the ground excitation of 1940 El Centro earthquake. Analyses of both sliding-base and fixed-base conditions are performed as comparisons. This study shows that using this model can simulate the dynamic response of a sliding structure with frictional cut-off quite accurately. Results reveal that lowering the frictional coefficient of the sliding joint will reduce the peak responses. The structure responses in little deformation, but it displaces at the end of excitation.