• 제목/요약/키워드: Ground source

검색결과 1,101건 처리시간 0.024초

전압 이득이 향상된 단상 전류형 qZ-소스 인버터 (Enhanced Voltage Gain Single-Phase Current-Fed qZ-Source Inverter)

  • 신현학;차헌녕;김흥근
    • 전력전자학회논문지
    • /
    • 제18권4호
    • /
    • pp.305-311
    • /
    • 2013
  • This paper proposes a performance improvement of existing single-phase current-fed qZ-Source inverter. Voltage gain of the traditional voltage-fed full-bridge inverter and single-phase current-fed qZ-source inverter is only equal to or smaller than input voltage. The proposed inverter can obtain twice higher voltage gain than the single-phase current-fed qZ-Source inverter by adding an extra switch and a capacitor in the circuit. In addition, the proposed inverter shares the common ground between dc input and ac output voltage. Therefore, the proposed inverter can eliminate the possible ground leakage current problem when it is used for grid-tied photovoltaic inverter system. A 120 W prototype inverter is built and tested to verify performances of the proposed inverter.

GaAs MESFET의 Source 접지상태에 따른 게이트 누설 전류 특성 (The GaAs Leakage Current Characteristics of GaAs MESFET's using Source Ground Status)

  • 원창섭;유영한;안형근;한득영
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2003년도 하계학술대회 논문집 Vol.4 No.1
    • /
    • pp.263-266
    • /
    • 2003
  • The gate leakage current is first calculated using the experimental method between gate and drain by opening source electrode. Next, the gate to drain current has been obtained with a ground source. The difference of two current has been tested and provide that the existence of another source to Schotuy barrier height against the image force lowering effect.

  • PDF

학교 건물용 지열 히트펌프 시스템 설계와 지중 순환수 온도 변화 분석 (Design of Ground-Coupled Heat Pump (GCHP) System and Analysis of Ground Source Temperature Variation for School Building)

  • 손병후
    • 한국지열·수열에너지학회논문집
    • /
    • 제16권1호
    • /
    • pp.17-25
    • /
    • 2020
  • Ground-coupled heat pump (GCHP) systems have become an efficient alternative to conventional cooling and heating methods due to their higher energy using efficiency. Although some experimental and simulation works related to performance analysis of GCHP systems for commercial buildings have been done, relatively little has been reported on the performance evaluation of GCHP systems for school buildings. The purpose of this simulation study is to evaluate the performance of a hypothetical GCHP system for a school building in Seoul. We collected various data of building specifications and construction materials for the building and then modeled to calculate hourly building loads with SketchuUp and TRNSYS V17. In addition, we used GLD (Ground Loop Design) V2016, a GCHP system design and simulation software, to design the GCHP system for the building and to simulate temperature of circulating water in ground heat exchanger. The variation of entering source temperature (EST) into the system was calculated with different prediction time and then each result was compared. For 20 years of prediction time, EST for baseline design (Case A) based on the hourly simulation results were outranged from the design criteria.

On the variability of strong ground motions recorded from Vrancea earthquakes

  • Pavel, Florin;Vacareanu, Radu;Arion, Cristian;Neagu, Cristian
    • Earthquakes and Structures
    • /
    • 제6권1호
    • /
    • pp.1-18
    • /
    • 2014
  • The main focus of this paper is the analysis of the different components of the variability for strong ground motions recorded from earthquakes produced by the Vrancea subcrustal seismic source. The analysis is performed for two ground motion prediction equations: Youngs et al. (1997) and Zhao et al. (2006), recommended within the SHARE project for the Vrancea subcrustal seismic source and which are proposed in the work of Delavaud et al. (2012) and graded best in Vacareanu et al. (2013c). The first phase of the analysis procedure consists of a grading procedure. In the second phase, the single station sigma procedure is applied for both attenuation models in order to reduce some parts of ground motion models' variability produced by the ergodic assumption. The strong ground motion database which is used throughout the study consists of over 400 accelerograms recorded from 9 Vrancea intermediate-depth seismic events. The results of the single station sigma analysis show significant reduction of the standard deviations, especially in the case of the Youngs et al. (1997) attenuation model, which is also graded better than the other selected GMPE.

Viaduct seismic response under spatial variable ground motion considering site conditions

  • Derbal, Rachid;Benmansour, Nassima;Djafour, Mustapha;Matallah, Mohammed;Ivorra, Salvador
    • Earthquakes and Structures
    • /
    • 제17권6호
    • /
    • pp.557-566
    • /
    • 2019
  • The evaluation of the seismic hazard for a given site is to estimate the seismic ground motion at the surface. This is the result of the combination of the action of the seismic source, which generates seismic waves, the propagation of these waves between the source and the site, and site local conditions. The aim of this work is to evaluate the sensitivity of dynamic response of extended structures to spatial variable ground motions (SVGM). All factors of spatial variability of ground motion are considered, especially local site effect. In this paper, a method is presented to simulate spatially varying earthquake ground motions. The scheme for generating spatially varying ground motions is established for spatial locations on the ground surface with varying site conditions. In this proposed method, two steps are necessary. Firstly, the base rock motions are assumed to have the same intensity and are modelled with a filtered Tajimi-Kanai power spectral density function. An empirical coherency loss model is used to define spatial variable seismic ground motions at the base rock. In the second step, power spectral density function of ground motion on surface is derived by considering site amplification effect based on the one dimensional seismic wave propagation theory. Several dynamics analysis of a curved viaduct to various cases of spatially varying seismic ground motions are performed. For comparison, responses to uniform ground motion, to spatial ground motions without considering local site effect, to spatial ground motions with considering coherency loss, phase delay and local site effects are also calculated. The results showed that the generated seismic signals are strongly conditioned by the local site effect. In the same sense, the dynamic response of the viaduct is very sensitive of the variation of local geological conditions of the site. The effect of neglecting local site effect in dynamic analysis gives rise to a significant underestimation of the seismic demand of the structure.

서울 S지역에서 발생한 영아 메트헤모글로빈혈증 1례의 원인구명을 위한 역학조사 (Epidemiologic Investigation to Identify the Cause of an Infant Methemoglobinemia)

  • 김영열;최보율;박항배;김민영;여인학
    • Journal of Preventive Medicine and Public Health
    • /
    • 제26권2호
    • /
    • pp.192-201
    • /
    • 1993
  • Epidemiologic investigation was conducted on January, 1993 in Seoul to identify the cause of an infant methemoglobinemia. Field investigation of the area of outbreak, survey of household and family members, analysis of ground water, and blood tests of involved family members were performed. Following results were obtained On analyzing the quality of the ground water on patient's household high levels of nitrate was found indicating contamination of water as the cause of a methemoglobinemia outbreak. On analysing the quality of the ground waters on seven other places within the neighborhood five were contaminated by nitrate in concentration that exceeded the permissible limit implying presence nearby source of contamination. Sources of contamination were thought to be originating from human waste in conventional bathroom facilities, chicken manure used in nearby orchards and plant fields or fertilizers. But the results of water analysis with presence of bacteria or E.coli, concentration of potassium, phosphate and the past history of diarrhea among family members, chicken manure suggested the most possible source of contamination. To evaluate the health status of members in the neighborhood past history was reviewed revealing no prior existence of patient with cyanosis and 65 people in the neighborhood had normal levels of methemoglobin concentration in their blood. Conclusively, the ground water on patient's household was contaminated with nitrate and despite provision of adequate water supply, family members of the patient along with their distrust in the water supply system had used ground water as their source of drinking water resulting of methemoglobinemia. Many suburban area of Seoul and country side thought to be having similar problems concerning contaminated ground water supply and dormant outbreak of patients as a result of the drinking of the contaminated water. Epidemiologic investigation and water analysis of ground waters are advised.

  • PDF

업무용 건물의 지열 히트펌프 시스템에 대한 성능 예측 (Performance Prediction on the Application of a Ground-Source Heat Pump(GSHP) System in an Office Building)

  • 손병후;권한솔
    • 설비공학논문집
    • /
    • 제26권9호
    • /
    • pp.409-415
    • /
    • 2014
  • Ground-source heat pump (GSHP) systems have become an efficient alternative to conventional cooling and heating methods due to their higher energy efficiency. These systems use the ground as a heat source and the heat sink for cooling mode operation. The purpose of this simulation study is to evaluate the performance of a hypothetical GSHP system in an office building and to assess the energy saving effect against the existing HVAC systems (boiler and turbo chiller). We collected monthly energy consumption data from an actual office building ($32,488m^2$) in Seoul, and created a model to calculate the hourly building loads with EnergyPlus. In addition, we used GLD (Ground Loop Design) V8.0, a GSHP system design and simulation software tool, to evaluate hourly and monthly performance of the GSHP system. The energy consumption for the GSHP system based on the hourly simulation results were estimated to be 582.6 MWh/year for cooling and 593.2 MWh/year for heating, while those for the existing HVAC systems were found to be 674.5 MWh/year and 2,496.4 MWh/year, respectively. The seasonal performance factor (SPF) of the GSHP system was also calculated to be in the range of 3.37~4.28.

수직형 U자 관 지중 열교환기를 갖는 지열원 열펌프의 동적 시뮬레이션 (Dynamic Simulation of Ground Source Heat Pump with a Vertical U-tube Ground Heat Exchanger)

  • 이명택;김영일;강병하
    • 설비공학논문집
    • /
    • 제19권5호
    • /
    • pp.372-378
    • /
    • 2007
  • GHX (Geothermal Heat Exchanger) design which determines the performance and initial cost is the most important factor in ground source heat pump system. Performance of GHX is strongly dependent on the thermal resistance of soil, grout and pipe. In general, GHX design is based on the static simulation program. In this study, dynamic simulation has been peformed to analyze the variation of system performance for various GHX parameters. Line-source theory has been applied to calculate the variation of ground temperature. The averaged weather data measured during a 10-year period $(1991\sim2000)$ in Seoul is used to calculate cooling and heating loads of a building with a floor area of $100m^2$. The simulation results indicate that thermal properties of borehole play significant effect on the overall performance. Change of grout thermal conductivity from 0.4 to $3.0W/(m^{\circ}C)$ increases COP of heating by 9.4% and cooling by 17%. Change of soil thermal conductivity from 1.5 to $4.0W/(m^{\circ}C)$ increases COP of heating by 13.3% and cooling by 4.4%. Change of GHX(length from 100 to 200 m increases COP of heating by 10.6% and cooling by 10.2%. To study long term performance, dynamic simulation has been conducted for a 20-year period and the result showed that soil temperature decreases by $1^{\circ}C$, heating COP decreases by 2.7% and cooling COP decreases by 1.4%.

유출지하수 열원 지열히트펌프용 Pond Loop형 열교환기의 열전달 성능 (Heat Transfer Performance of Pond loop type Heat Exchanger for Ground Source Heat Pump using Extruding Ground Wafer)

  • 박근우;김진상;이응열
    • 신재생에너지
    • /
    • 제2권2호
    • /
    • pp.86-93
    • /
    • 2006
  • 유출지하수나 지표수를 열원으로 지열히트펌프의 지초자료로 활용하기 위하여 Pond Loop형 열교환기를 설계, 제작하여 유동이 없는 수조 내에서 수조의 온도가 변화함에 따라 일정한 열교환기 입구온도를 유지하면서 열전달량을 측정하였다. 그 결과 수조를 Heat Source로 사용하는 경우 $5,500{\sim}4,500kcal/h$의 열량이 전달되었고 수조를 Heat Sink로 사용할 경우 $5,200{\sim}3,500kcal/h$의 열량이 전달되었다. 또한 열교환기 관내 유속이 증가함에 따라 열전달량이 증가하는 경향성을 확인할 수 있었고 이는 동시에 열교환기 입출구의 차압을 증가시킴을 알 수 있었다. 열교환기의 설계단계에서 사용하였던 열전달관계식으로 구한 총괄열전달계수, U와 실험값을 통해 유추한 U값을 비교한 결과 실험에 의해 유추된 U값이 $24{\sim}27%$ 설계치보다 크게 나타났다. 본 연구를 통하여 유출지하수 뿐만 아니라 하수 및 하천수를 이용한 지열히트펌프의 기초자료를 확보할 수 있었다.

  • PDF

단독주택용 지열원 열펌프 시스템의 경제성 분석 (Economic Analysis of a Residential Ground-Source Heat Pump System)

  • 손병후;강신형;임효재
    • 신재생에너지
    • /
    • 제3권4호
    • /
    • pp.31-37
    • /
    • 2007
  • Because of their low operating and maintaining costs, ground-source heat pump(GSHP) systems are an increasingly popular choice for providing heating, cooling and water heating to public and commercial buildings. Despite these advantages and the growing awareness, GSHP systems to residential sectors have not been adopted in Korea until recently. A feasibility study of a residential GSHP system was therefore conducted using the traditional life cycle cost(LCC) analysis within the current electricity price framework and potential scenarios of that framework. As a result, when the current residential electricity costs for running the GSHP system are applied, the GSHP system has weak competitiveness to conventional HV AC systems considered. However, when the operating costs are calculated in the modified price frameworks of electricity, the residential GSHP system has the lower LCC than the existing cooling and heating equipments. The calculation results also show that the residential GSHP system has lower annual prime energy consumption and total pollutant emissions than the alternative HVAC systems considered in this work.

  • PDF