• Title/Summary/Keyword: Ground slope

Search Result 790, Processing Time 0.027 seconds

Shaking table tests on the seismic response of slopes to near-fault ground motion

  • Zhu, Chongqiang;Cheng, Hualin;Bao, Yangjuan;Chen, Zhiyi;Huang, Yu
    • Geomechanics and Engineering
    • /
    • v.29 no.2
    • /
    • pp.133-143
    • /
    • 2022
  • The catastrophic earthquake-induced failure of slopes concentrically distributed at near-fault area, which indicated the special features of near-fault ground motions, i.e. horizontal pulse-like motion and large vertical component, should have great effect on these geo-disasters. We performed shaking table tests to investigate the effect of both horizontal pulse-like motion and vertical component on dynamic response of slope. Both unidirectional (i.e., horizontal or vertical motions) and bidirectional (i.e., horizontal and vertical components) motions are applied to soft rock slope model, and acceleration at different locations is reordered. The results show that the horizontal acceleration amplification factor (AAF) increases with height. Moreover, the horizontal AAF under unidirectional horizontal pulse-like excitations is larger than that subject to ordinary motion. The vertical AAF does not show an elevation amplification effect. The seismic response of slope under different bidirectional excitations is also different: (1) The horizontal AAF is roughly constant under horizontal pulse-like excitations with and without vertical waves, but (2) the horizontal AAF under ordinary bidirectional ground motions is larger than that under unidirectional ordinary motion. Above phenomena indicate that vertical component has limited effect on seismic response when the horizontal component is pulse-like ground motion, but it can greatly enhance seismic response of slope under ordinary horizontal motion. Moreover, the vertical AAF is enhanced by horizontal motion in both horizontal pulse-like and ordinary motion. Thence, we should pay enough attention to vertical ground motion, especially its horizontal component is ordinary ground motion.

A Study on the Flame Tilt and Flame Spread due to Up-slope on the Surface Fuel Bed - No wind condition - (경사에 따른 화염각 변화와 지표 화염 확산에 관한 연구 - 무풍조건 기반 -)

  • Kim, Dong-Hyun
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.5
    • /
    • pp.57-62
    • /
    • 2009
  • Flame spread velocity to virgin surface fuel bed on a ground slope increases as the flame gets closer to the slope according to the change of a ground slope angle. The existing studies have generally adopted the theory that flame gets closer to the slope as the slope angle increases, without considering the change of flame tilt against the slope. In this study, experiments were made on the actual characteristics of the flame on slopes of various angles, and as a result, this study offers the flame tilt equation according to the slope angle, and derive correlation between flame tilt and flame spread velocity on slope conditions.

Evaluation of Stability of Slope with Granite Weathered Soil considering Rainfall Events (강우사상을 고려한 화강풍화토 비탈면의 안정성 평가)

  • Kim, Gyu-Hyeong;Hwang, Eui-Pil;Lee, Kang-Il
    • Journal of the Society of Disaster Information
    • /
    • v.14 no.4
    • /
    • pp.421-429
    • /
    • 2018
  • Purpose: This study conducted a slope stability study considering changes in the ground water level due to rain phenomena and the duration of rainfall, that is for the purpose of analyzing the stability of the slope surface of the cut section, seepage numerical analysis is performed by height of slope and rainfall accident, and the characteristics of rainfall was applied reasonably in order to determine the slope change during rain by analyzing rainfall and rainfall pattern due to climate change. Results: As a result of numerical analysis of stability for slope composed of the granite weathered soils according to the characteristics of rainfall(Uniform Rainfall, US Army Corps., Huff's method - 1/4, 4/4), Conclusion: The higher the slope, the smaller the safety factor of the slope, the smaller the elevation of the ground water level as the rainwater seepage does not reach the underground water level. In addition, the ground water level was assessed to be rose significantly in condition of case 3 Huff's method - 1/4, rain pattern with the largest initial rainfall duration, and the safety factor was analyzed to be small.

Slope Stability Analysis by Rainfall Infiltration (강우침투에 따른 사면의 안정성 평가)

  • Han, Heui-Soo;Cho, Jae-Ho;Yang, Nam-Yong;Shin, Baek-Chul
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.10
    • /
    • pp.29-38
    • /
    • 2011
  • The unsaturated layers by rainfall infiltration are not properly reflected in construction codes to do slope design. The objective of this paper is to analyze the slope behavior according to the saturation layer increase resulted from the rainfall infiltration, to do that the laboratory slope model apparatus was adopted. From the model apparatus, the variation of water content and strength parameters of the model slope were analyzed. The safety factors of model slope was decreased, if saturation layer was increased from 3.0m to 4.5m, which means ground water level 3m selected from construction codes makes higher safety level. Also, if the ground water level is located in soil surface, the lower safety level will show up. Therefore, to make the proper slope design, the experiments and analysis of variation of saturation layer is needed.

Fundamental periods of reinforced concrete building frames resting on sloping ground

  • De, Mithu;Sengupta, Piyali;Chakraborty, Subrata
    • Earthquakes and Structures
    • /
    • v.14 no.4
    • /
    • pp.305-312
    • /
    • 2018
  • Significant research efforts were undertaken to evaluate seismic performance of vertically irregular buildings on flat ground. However, there is scarcity of study on seismic performance of buildings on hill slopes. The present study attempts to investigate seismic behaviour of reinforced concrete irregular stepback building frames with different configurations on sloping ground. Based on extensive regression study of free vibration results of four hundred seventeen frames with varying ground slope, number of story and span number, a modification is proposed to the code based empirical fundamental time period estimation formula. The modification to the fundamental time period estimation formula is a simplified function of ground slope and a newly introduced equivalent height parameter to reflect the effect of stiffness and mass irregularity. The derived empirical formula is successfully validated with various combinations of slope and framing configurations of buildings. The correlation between the predicted and the actual time period obtained from the free vibration analysis results are in good agreement. The various statistical parameters e.g., the root mean square error, coefficient of determination, standard average error generally used for validation of such regression equations also ensure the prediction capability of the proposed empirical relation with reasonable accuracy.

Dynamic Behavior Analysis of the Auto-leveling System for Large Scale Transporter Type Platform Equipment on the Ground Slope (경사지에서 운용 가능한 대형 차량형 플랫폼 장비 자동수평조절장치의 동적 거동)

  • Ha, Taewan;Park, Jungsoo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.23 no.5
    • /
    • pp.502-515
    • /
    • 2020
  • To identify the dynamic characteristics of the Auto-leveling system applied to the Tractor-Trailer type Transporter for mounting a large scale precision equipment, Dynamics Modeling & Simulation were performed using general Dynamics Analysis Program - RecurDyn(V9R2). The axial load data, transverse load data and pad trace data of leveling actuators were obtained from M&S. And they were analyzed and compared with each other by parameters, i.e. friction coefficients on the ground, landing ram speed of actuators, and direction & quantity of ground slope. It was observed that ground contact friction coefficients affected to transverse load and pad trace; the landing ram speed of actuators to both amplitude of axial & transverse load, and this phenomena was able to explain from the frequency analysis of the axial load data; the direction of ground slope to driving sequence of landing ram of actuators. But the dynamic behaviors on the two-directional slope were very different from them on the one-directional slope and more complex.

Working Principle of a Novel Three-directional Dumping Vehicle and Its Dumping Stability Analysis Under Ground-slope Conditions

  • Kong, Min-kyu;Park, Tusan;Shim, Sung-Bo;Jang, Ik Joo
    • Journal of Biosystems Engineering
    • /
    • v.42 no.4
    • /
    • pp.235-241
    • /
    • 2017
  • Purpose: It is to develop an agricultural three-directional dumping vehicle that can help farmers reduce intensive labor when carrying heavy loads and for easy dumping. In addition, a novel mechanism was applied for controlling the direction of the tilting cargo box by using a single hydraulic cylinder and simple apparatus. The overturning safety was analyzed to provide safe-use ground slope region of the vehicle to be used at upland fields and orchards. Methods: The developed three-directional dumping vehicle was constructed using a cargo box, vehicle frame, driving components, lifting components, and controller. The novel mechanism of controlling the dumping direction involves the operation of two latching bars, which selectively release or collapse the connecting edge between the vehicle frame and cargo box. A multibody dynamics analysis software (RecurDynV8R5) was used to determine the safe-use ground slope area when tilting the cargo box at slopes. A computer analysis was conducted by increasing the ground slope while rotating the vehicle when the cargo box comprised loads of 300 and 500 kg and stacking heights of 40 and 80 cm, respectively. Results: The three-directional dumping vehicle was successfully manufactured, and the cargo box was tilted at $37^{\circ}$ and $35^{\circ}$ for dumping forward and sideways. The latching bars were manually and selectively collapsed with the vehicle frame to control the dumping direction. When forward dumping, the safe-use ground slope was over $20^{\circ}$ in all vehicle directions and loaded conditions. Conclusions: A three-directional dumping vehicle was developed to reduce labor-intensive work in the farming environment. The user can easily control the dumping direction by using the control panel. The vehicle was safe to be used in most of the Korean upland fields and orchards (area over 96%) for the forward dumping.

Analytical study on safety factor of concrete pole installed in sloped ground (콘크리트 전주의 경사지 전도 안전율에 관한 해석 연구)

  • Shin, Dong-Geun;Yoon, Ki-Yong;Lee, Seung-Hyun;Kang, Young-Jong
    • 한국방재학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.433-436
    • /
    • 2007
  • We analyzed the sloped ground safety factor, which is not presented in the design specification, using a computational analysis program L-Pile Plus 13.8. To achieve this we chose a required parameter set and a level ground safety factor presented in the design specification, and then determined its values comparing with the change of the safety factor according to the parameter. Using these parameters, we estimated the sloped ground safety factor for the slope of 35 degrees considering the improvement value of the slope presented in the design specification. As a result of this analysis, we obtained the smaller safety factor by about 0.7 times than the case of the level ground and verified that a number of concrete poles fail to assure 1 degree of the safety factor. We, therefore, concluded that an adjustment of the embedment depth is required in the case of the sloped ground.

  • PDF

Study on the Travel and Tractive Characteristics of The Two-Wheel Tractor on the General Slope Ground (II)-Dynamic Side-overturn of the Tiller-trailer System- (동력경운기의 경사지견인 및 주행특성에 관한 연구 (II)-동력경운기-트레일러계의 욍골동 및 동횡전도한계)

  • 송현갑;정창주
    • Journal of Biosystems Engineering
    • /
    • v.3 no.1
    • /
    • pp.1-19
    • /
    • 1978
  • Power tiller is a major unit of agricultural machinery being used on farms in Korea. About 180.000 units are introduced by 1977 and the demand for power tiller is continuously increasing as the farm mechanization progress. Major farming operations done by power tiller are the tillage, pumping, spraying, threshing, and hauling by exchanging the corresponding implements. In addition to their use on a relatively mild slope ground at present, it is also expected that many of power tillers could be operated on much inclined land to be developed by upland enlargement programmed. Therefore, research should be undertaken to solve many problems related to an effective untilization of power tillers on slope ground. The major objective of this study was to find out the travelling and tractive characteristics of power tillers being operated on general slope ground.In order to find out the critical travelling velocity and stability limit of slope ground for the side sliding and the dynamic side overturn of the tiller and tiller-trailer system, the mathematical model was developed based on a simplified physical model. The results analyzed through the model may be summarized as follows; (1) In case of no collision with an obstacle on ground, the equation of the dynamic side overturn developed was: $$\sum_n^{i=1}W_ia_s(cos\alpha cos\phi-{\frac {C_1V^2sin\phi}{gRcos\beta})-I_{AB}\frac {v^2}{Rr}}=0$$ In case of collision with an obstacle on ground, the equation was: $$\sum_n^{i=1}W_ia_s\{cos\alpha(1-sin\phi_1)-{\frac {C_1V^2sin\phi}{gRcos\beta}\}-\frac {1}{2}I_{TP} \( {\frac {2kV_2} {d_1+d_2}\)-I_{AB}{\frac{V^2}{Rr}} \( \frac {\pi}{2}-\frac {\pi}{180}\phi_2 \} = 0 $$ (2) As the angle of steering direction was increased, the critical travelling veloc\ulcornerities of side sliding and dynamic side overturn were decreased. (3) The critical travelling velocity was influenced by both the side slope angle .and the direct angle. In case of no collision with an obstacle, the critical velocity $V_c$ was 2.76-4.83m/sec at $\alpha=0^\circ$, $\beta=20^\circ$ ; and in case of collision with an obstacle, the critical velocity $V_{cc}$ was 1.39-1.5m/sec at $\alpha=0^\circ$, $\beta=20^\circ$ (4) In case of no collision with an obstacle, the dynamic side overturn was stimu\ulcornerlated by the carrying load but in case of collision with an obstacle, the danger of the dynamic side overturn was decreased by the carrying load. (5) When the system travels downward with the first set of high speed the limit {)f slope angle of side sliding was $\beta=5^\circ-10^\circ$ and when travels upward with the first set of high speed, the limit of angle of side sliding was $\beta=10^\circ-17.4^\circ$ (6) In case of running downward with the first set of high speed and collision with an obstacle, the limit of slope angle of the dynamic side overturn was = $12^\circ-17^\circ$ and in case of running upward with the first set of high speed and collision <>f upper wheels with an obstacle, the limit of slope angle of dynamic side overturn collision of upper wheels against an obstacle was $\beta=22^\circ-33^\circ$ at $\alpha=0^\circ -17.4^\circ$, respectively. (7) In case of running up and downward with the first set of high speed and no collision with an obstacle, the limit of slope angle of dynamic side overturn was $\beta=30^\circ-35^\circ$ (8) When the power tiller without implement attached travels up and down on the general slope ground with first set of high speed, the limit of slope angle of dynamic side overturn was $\beta=32^\circ-39^\circ$ in case of no collision with an obstacle, and $\beta=11^\circ-22^\circ$ in case of collision with an obstacle, respectively.

  • PDF

Lateral Force Acting on H-piles in Plastically Deforming Ground (소성변형지반 중의 H형 말뚝에 작용하는 수평력)

  • 김영인
    • Journal of Ocean Engineering and Technology
    • /
    • v.15 no.4
    • /
    • pp.86-91
    • /
    • 2001
  • In lateral ground flow, slope stability, and land slide problems, H-piles have been often used for a horizontally deforming ground to prevent the failure of mass of soil in a downward and outward movement of a slope. Here, Theoretical equations are derived to estimate the lateral force, assuming that the Mohr-coulomb's Plastic states occures in the ground just around H-piles. In this study, the mechanism of lateral force acting on passive pile that is in a row, situated in the ground undergoing plastic deformation was discussed, and its theoretical analysis was carried out considering the interval between H-piles. The solution of the theoretical equation derived from here showed resonable characteristic for constants of soil as well as for the interval, widths, and heights of H-pile.

  • PDF