• Title/Summary/Keyword: Ground sinking management system

Search Result 6, Processing Time 0.019 seconds

Study on Management System of Ground Sinking Based on Underground Cavity Grade (공동관리 등급에 따른 지반함몰 관리등급제에 대한 연구)

  • Lee, Kicheol;Kim, Dongwook;Park, Jeong-Jun
    • Journal of the Korean Geosynthetics Society
    • /
    • v.16 no.2
    • /
    • pp.23-33
    • /
    • 2017
  • Due to the rapid development of cities, densities and heights of urban structures are increased, and much larger and more underground spaces are being developed accordingly. Increasing development of underground spaces has induced more ground sinks and underground cavities. Therefore, safety of people is threatened by potential ground collapses and possible accidents, which may result from underground cavity. To actively respond against potential danger of ground sink, evaluation of existing cavity grade and development of recovery procedure are important. There exists the ground sinking management grade system of expressway developed as local standards in Japan. Recently, ground sinking management grade system of Seoul was developed with consideration of road and asphalt conditions. In this study, 209 underground cavities of ${\bigcirc}{\bigcirc}$ area were explored and their cavity shapes and grades were evaluated based on both ground sinking management grade systems of Japan and Seoul. Comparison is made between cavity grades evaluated based on both grading systems from Japan and Seoul. As a result of comparative analysis, the conservatively-estimated cavity grades requiring emergency restoration based on the Japanese management grade system of expressway result from neglection of layer thickness of surface pavement, considering only width and cover depth of a cavity.

Improvement of fishing efficiency of Danish seine to ratio of buoyancy by sinking force (부력조정에 의한 외끌이기선저인망의 어획성능 개선)

  • Lee, Hye-Ok;Lee, Ju-Hee;Kwon, Byeong-Guk;Kim, Bu-Yeong;Kim, Byung-Soo;Yoo, Je-Bum
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.43 no.2
    • /
    • pp.87-100
    • /
    • 2007
  • This study was carried out to offer fundamental data for improving the fishing efficiency of the Danish seine. The net height and the shape in the water was measured to analyze the efficiency of the existing Danish seine. And then, an improved fishing gear was developed based on the results and was tested in the field. Measuring devices were attached on center of a ground rope and a head rope. The net height is the spread distance between the ground rope and the head rope, which was measured on the different ratio of buoyancy. The results are obtained as follows. The net height estimated from the design plan of horizontal hanging ratio 0.40 in the existing Danish seine A and B estimated both 4.94m. The net height of the existing Danish seine A and B was respectively 1.8m and 2.3m, which form 36.4% and 46.2% of the net height estimated from the design plan. Buoyancy was changed as 79.5% and 96.2% relative to the sinking force in the existing Danish seine. The net height of 79.5% was 3.95m which increased to 80% of the estimated net height. The other shows the same result with the first case. It is not necessarily that the high buoyancy/sinking force ratio make the high net height, 80% is adequate as the buoyancy/sinking force ratio. In case of the improved Danish seine, the mean net height was about 5.0m, means 58.3% of estimated net height 8.58m.

Proposal of the Development Direction on the Special Act on Underground Safety Management for Preparation of the Proactive Underground Safety Management System (선제적 지하안전관리체계 마련을 위한 지하안전관리에 관한 특별법의 발전방향 제시)

  • Han, Yushik
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.7
    • /
    • pp.17-27
    • /
    • 2018
  • Sinkholes have occurred in various places around the world and concerns about public safety have been raised in recent years. Particularly, a ground subsidence may occur due to a variety of conditions when developing underground spaces. Ground subsidence refers to the sinking of the Earth's surface caused by the loss of the soil constituting ground due to a certain artificial cause in the ground. Ground subsidence is induced by artificial causes such as the leakage of water supply/sewage pipes and groundwater disturbance, and it is different from a sinkhole, where the sinking of the Earth's surface is induced by the cavity formed due to the melting of limestone in the ground with limestone bedrock. In recent underground development in the urban areas of Korea, damages to surrounding buildings have frequently led to many difficulties with civil complaints and compensation issues, and the collapse of some buildings has resulted in the loss of lives and property. Accordingly, the central government has legislated the Special Act on Underground Safety Management, which will take effect from January 1, 2018. This law specifies an underground safety management system for securing underground safety, under which underground safety impact assessment is performed for projects involving underground excavation work that exceeds a certain size, and safety inspection is regularly performed for underground facilities and the surrounding ground. In this study, the contents of the special act on underground safety management are reviewed, and the direction of development of underground safety policy for preparing preemptive underground safety management preparation and response system is suggested.

Study on Improvement Plan of System through Analysis of Ground Sink Accidents - Focused on the management of underground facilities and their surrounding ground - (지반함몰 사고 분석을 통한 제도 개선안 연구 - 지하시설물 및 주변지반 관리 중심으로 -)

  • Kim, Dong-jin;Lee, Jong-keun;Kim, Hong-kyoon;No, Tae-kil
    • Journal of the Korea Institute of Construction Safety
    • /
    • v.3 no.1
    • /
    • pp.18-24
    • /
    • 2020
  • The purpose of this study is to propose a system improvement plan to prevent ground sinking accidents. To do this, follow the procedure below. First, it defines terms that are used interchangeably, such as ground subsidence and ground depression. Second, analysis of the current status and cause of ground sink, and the analysis of the correlation between rainfall and ground sink causes, derives priority management causes. Third, we propose a system improvement plan for the cause of priority management. As a result, damage to underground pipes and inadequate underground works were identified as the cause of priority management, and two system improvement plans to manage them were proposed. The results of this study can be used as basic data for improving the system for more effective prevention of underground sink in the future.

Field Application of RFID for the Cavity Maintenance of Under Pavement (도로하부 공동의 유지관리를 위한 RFID의 현장 적용성 평가)

  • Park, Jeong Jun;Shin, Eun Chul;Kim, In Dae
    • Journal of the Society of Disaster Information
    • /
    • v.15 no.4
    • /
    • pp.459-468
    • /
    • 2019
  • Purpose: The cavity exploration of the lower part of the road is carried out to prevent ground-sinking. However, the detected communities cannot be identified by the cavity location and history information, such as repackaging the pavement. Therefore, the field applicability of RFID systems was evaluated in this study to enable anyone to accurately identify information. Method: During temporary recovery, tag recognition distance and recognition rate were measured according to underground burial materials and telecommunication tubes using RFID systems with electronic tag chips attached to the bottom of the rubber cap. Result: The perceived distance and perceived rate of depth for each position of the electron tag did not significantly affect the depth up to 15cm, but it did have some effect if the depth was 20cm. In addition, water effects from nearby underground facilities and rainfall are relatively small, and the effects of wind will need to be considered during the weather conditions of the road. Conclusion: The RFID tags for field application of the pavement management system store various information such as location and size of cavity, identification date, cause of occurrence, and surrounding underground facilities to maximize cavity management effect with a system that can be computerized and mobile utilization.

A Study of the DB Design Standard for Submitting Completion Drawings for Auto-Renewal of Underground Facility Information (지하시설물정보 자동갱신을 위한 준공도서 제출 표준DB 설계 연구)

  • Park, Dong Hyun;Jang, Yong Gu;Ryu, Ji Song
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.6
    • /
    • pp.681-688
    • /
    • 2020
  • The Under Space Integrated Map has been constructed consistently from '15 construction projects until the present time in an effort to implement the "ground sinking prevention method" for the purpose of strengthening underground safety management. The constructed Under Space Integrated Map is utilized to provide information to the person in charge at local government through application of the system of underground information based on the administrative network and to deliver this to specialized underground-safety-effects -evaluation organizations through map extraction based on a floor plan. It suffers from a limitation in its practical use, however, since information is only provided, without promoting a separate renewal project. Although in Section 1 of Article 42 in the Special Law Concerning Underground Safety Management the content pertaining to submission obligations of completion drawings related to underground information including change and renewal are stated explicitly in order to solve this problem, submission is not sufficient since a submission window based only on the administrative network is operated. Accordingly, the Ministry of Land, Infrastructure, and Transport constructed an online system for submitting completion drawings, in an attempt to change the method by which entities involved in underground development directly submitted completion drawings. In this study, a DB standard relating to submitting completion drawings was designed and applied in order to construct an auto-renewal system based on submitted completion drawings, which will be extended to cover the range to underground structures hereafter.