• Title/Summary/Keyword: Ground potential transformer

Search Result 17, Processing Time 0.028 seconds

Dynamic Property of Ground Overvoltage Relay in Large Turbine Generator (대용량 터빈발전기에서 접지과전압 계전기의 동작 특성)

  • Kim, Hee-Dong;Lee, Young-Jun;Kim, Byong-Han;An, Joon-Young;Chae, Gyu-Jin
    • Proceedings of the KIEE Conference
    • /
    • 1999.11d
    • /
    • pp.1044-1047
    • /
    • 1999
  • This paper deals with the dynamic property of ground overvoltage relay in large turbine generator. Relay operation is based on detecting the fundamental voltages originating from the generator. Calculations of fault voltage and current are reviewed for the neutral ground resistance. The frequency, ampitude and waveform of individual harmonics were measured using power quality analyzer and memory hi-corder at the secondary side of ground potential transformer. The ac and dc high-potential tests were applied to evaluate the condition of generator, main and auxiliary transformer, isolated phase bus, potential transformer, surge capacitor and arrester.

  • PDF

Development of a Monitoring Equipment of Current and Potential on Power Transmission Line for 66kV

  • Nisiyama, Eiji;Kuwanami, Kenshi;Kawano, Mitsunori;Matsuda, Toyonori;Oota, I.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.41-44
    • /
    • 2003
  • We propose portable equipment that monitors current and voltage of high-potential power transmission lines. In the equipment, a current and voltage sensor are attached to an insulator that supports a power transmission line: A clamped to the power line and the detected current signal is transmitted to the ground station by a wireless optical link using transmission line is detected by a high resistance element, zinc oxide (ZnO). That acts as a potential divider between the power line and ground. We make an experimental device for 66kV power line and demonstrate that it can monitor currents proposed equipment is small-sized, light, and inexpensive in comparison with the conventional CT (current transformer) and PT (potential transformer) since it does not require high potential insulators and magnetic cores, further, the equipment is easily installed owing to its small size and its simple structure.

  • PDF

A study on an earthing system without ground connection (대지에 매설할 필요가 없는 접지시스템에 관한 연구)

  • Seol, Dong-Hwa;Kim, Chang-Bong;Woo, Jea-Wook
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2009.08a
    • /
    • pp.258-261
    • /
    • 2009
  • This paper proposes an earthing system without ground connection. As a Green IT Environmental Solution, Internal-external surge and other unnecessary electric currents are converted into energy and through a discharge the signal is reduced. It's a structure that discharges through a neutral electric transformer. The results show that the electric potential rising of the earthing system proposed in this paper are approximately below the half and the discharge currents increased approximately 9 times when compared to existent earthing systems. This earthing system is economical, easy to install and can solve environmental contamination.

  • PDF

Analysis on the Protective Coordination with Hybrid Superconducting Fault Current Limiter (저항접지 시스템에서 지락사고시 CLR과열 소손방지를 위한 GPT 정격용량의 적정성 연구)

  • Shin, Ho-Jeon;Kim, Jin-Seok;Park, Yu-Hwan;Kim, Jae-Chul;Cho, Man-Young
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.4
    • /
    • pp.503-508
    • /
    • 2012
  • Among the high distribution voltage consumers, high-capacity consumers are often applying the grounding resistance method in order to overcome demerits such as erroneous operation of the ground reply or potential increase in the battery at the accident of the isolated neutral system. In this paper, to prevent damage to CLR and GPT in the delay to block the breakdown in the resistance grounded neutral system, this study aims to provide a proper suggestion for continuous rating capacity of GPT to check the appropriateness of CLR size and reduce GPT burden. Thereupon, this study comparatively analyzes CLR current applied in general GPT and the current gained when CLR demanded in the system is used and analyzes the simulated system through simulation using PSCAD/EMTDC in order to suggest GPT's proper continuous rating capacity.

A Study on the Grounding Resistance Effects of Power Transformer in Electric Distribution Systems (배전계통에서 전력용 변압기의 접지저항 영향에 관한 연구)

  • Kim, Kyung-Chul;Jung, Ji-Won;Lee, Kyu-Jin;Lee, Kang-Soo;Choi, Sun-Kyu
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.2
    • /
    • pp.113-119
    • /
    • 2010
  • A safe grounding design is used for providing means to carry electric currents into the earth under fault conditions without exceeding any operating limits and for assuring that a person in the vicinity of grounded facilities is not exposed to danger of critical electrical shock. Transformer neutral point grounding is for the purpose of controlling the voltage to earth within tolerable limits under a line-to-ground fault. Transformer frame grounding is for the purpose of minimizing the hazardous potential within safety criteria appearing at the faulted equipment. ills paper deeply investigates the grounding resistance effects of distribution power transformers by analysing the neutral to eatth voltages and touch voltages when the fault occurs.

Effects of Ground Faults on the Safety of Persons in High Voltage Distribution Systems (고압계통 지락고장시 인체안전에 미치는 영향)

  • Kang, Sung-Man;Kim, Han-Soo;Lee, Jong-Chul;Lee, Ju-Chul
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.195-197
    • /
    • 2007
  • This paper presents experimental results on the safety of persons due to a ground fault in 22.9 kV-Y distribution system In order to evaluate the touch voltages due to internal ground faults in a step down transformer based on the newly prescribed KS C IEC 60364 standard series, the verification tests in a 22.9 kV multi-grounded neutral system were carried out From the experimental results, it was found that there will be significant potential rise jeopardizing LV equipment insulation in case of separate grounding between HV and LV system and the effective measures against hazardous touch voltages due to a IN side ground fault in the common grounding system between HV and LV system are proposed. As a consequence, it was found that the equipotential bonding is an important prerequisite for the effectiveness of the protective measures for the safety of persons in the common ground system between 22.9 kV-Y and low-voltage grounding system.

  • PDF

Analysis of Transformer Fluid Aging from Overload Operation (지중 저압접속함의 침수조건에 따른 전위 분석)

  • Joung, Jong-Man;Lee, Byung-Sung;Choi, Jong-Gi;Jeong, Yeon-Ha;Park, Cheol-Bae;Song, Il-Kun
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.284-287
    • /
    • 2006
  • In this paper variety test results were discussed regarding to the ground potential increase. The tests conducted with a joint box simulating leakage point having an insulator fault. Inside the joint box three-phase cables and one neutral line were connected and the insulator at jointed part was peeled from the one of three-phase cables. The potentials around manhole cover were measured with the variation of manhole material, ground resistance and water resistance when the manhole was flooded. The potentials induced by an electric leakage were drastically decreased with increasing the distance from the leakage location and with less ground resistance.

  • PDF

A Three Phase Three-level PWM Switched Voltage Source Inverter with Zero Neutral Point Potential

  • Oh Won-Sik;Han Sang-Kyoo;Choi Seong-Wook;Moon Gun-Woo
    • Journal of Power Electronics
    • /
    • v.5 no.3
    • /
    • pp.224-232
    • /
    • 2005
  • A new three phase three-level Pulse Width Modulation (PWM) Switched Voltage Source (SVS) inverter with zero neutral point potential is proposed. It consists of three single-phase inverter modules. Each module is composed of a switched voltage source and inverter switches. The major advantage is that the peak value of the phase output voltage is twice as high as that of a conventional neutral-point-clamped (NPC) PWM inverter. Thus, the proposed inverter is suitable for applications with low voltage sources such as batteries, fuel cells, or solar cells. Furthermore, three-level waveforms of the proposed inverter can be achieved without the switch voltage imbalance problem. Since the average neutral point potential of the proposed inverter is zero, a common ground between the input stage and the output stage is possible. Therefore, it can be applied to a transformer-less Power Conditioning System (PCS). The proposed inverter is verified by a PSpice simulation and experimental results based on a laboratory prototype.

Seismic mitigation of substation cable connected equipment using friction pendulum systems

  • Karami-Mohammadi, Reza;Mirtaheri, Masoud;Salkhordeh, Mojtaba;Mosaffa, Erfan;Mahdavi, Golsa;Hariri-Ardebili, Mohammad Amin
    • Structural Engineering and Mechanics
    • /
    • v.72 no.6
    • /
    • pp.785-796
    • /
    • 2019
  • Power transmission substations are susceptible to potential damage under seismic excitations. Two of the major seismic failure modes in substation supplies are: the breakage of brittle insulator, and conductor end fittings. This paper presents efficient isolation strategies for seismically strengthening of a two-item set of equipment including capacitive voltage transformer (CVT) adjacent to a Lightning Arrester (LA). Two different strategies are proposed, Case A: implementation of base isolation at the base of the CVT, while the LA is kept fixed-base, and Case B: implementation of base isolation at the base of the LA, while the CVT is kept fixed-base. Both CVT and LA are connected to each other using a cable during the dynamic excitation. The probabilistic seismic behavior is measured by Incremental Dynamic Analysis (IDA), and a series of appropriate damage states are proposed. Finally, the fragility curves are derived for both the systems. It is found that Friction Pendulum System (FPS) isolator has the potential of decreasing flexural stresses caused by intense ground motions. The research has shown that when the FPS is placed under LA, i.e. Case B (as oppose to Case A), the efficiency of the system is improved in terms of reducing the forces and stresses at the bottom of the porcelain. Several parametric studies are also performed to determine the optimum physical properties of the FPS.

A Study on Development of Open-Phase Protector Having Leakage Current Generation and Incapable Operation Prevention at Open-Phase Accident (결상 시 누전전류 발생과 오동작 방지 기능을 갖는 결상보호기 개발에 관한 연구)

  • Kwak, Dong-Kurl
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.1
    • /
    • pp.182-187
    • /
    • 2015
  • In the three-phase power system, when any one-phase or two-phases is open-phase, the unbalanced current flows and the single-phase power supplies to three-phase loads. Specially, motor coil and transformer coil receive over-current. As a result, great damage as well as electrical fire can occur to the power system. In order to improve these problems, this paper proposes that an open-phase detection device is designed by a new algorithm using electric potential difference between the resultant voltage of neutral point and ground, and a control circuit topology of open-phase protector is composed of highly efficient semiconductor devices. It improves response speed and reliability. The control algorithm circuit also operates the cut-off of a conventional residual current protective device (RCD) which flows an enforced leakage current to ground wire at open-phase accident. Furthermore, time delay circuit is added to prevent the incapable operation of open-phase protector about instantaneous open-phase not open-phase fault. The time delay circuit improves more reliability.