• Title/Summary/Keyword: Ground heat source

Search Result 311, Processing Time 0.025 seconds

Measurement of Ground Thermal Conductivity and Characteristics of Thermal Diffusion by the Ground Heat Exchanger (지중열전도도 측정과 지중열교환기의 열확산 특성 분석)

  • Jeong, Young-Man;Koo, Kyung-Min;Hwang, Yu-Jin;Jang, Se-Yong;Lee, Yeong-Ho;Lee, Dong-Hyuk;Lee, Jae-Keun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.11
    • /
    • pp.739-745
    • /
    • 2008
  • This paper presents the measurement of ground thermal conductivity and the characteristics of ground thermal diffusion by a ground heat exchanger(GHE). A borehole is installed to a depth of 175 m with a diameter of 150 mm. To analyze the thermal diffusion property of the GHE, thermocouples are installed under the ground near the GHE. The outdoor temperature, the ground temperature, and the water temperature of the GHE are monitored for evaluating the characteristics of ground thermal diffusion. The ground thermal conductivity is evaluated by the in-situ thermal response tester and the line source model. It is found to be 3.08 W/$m^{\circ}C$ in this study. The ground temperature is greatly dependent on the outdoor temperature from the ground surface to 2.5 m in depth and is stable below 10 m in depth. The surface temperature of the GHE varies as a function of the temperature of circulating water. But the ground temperature at 1.5 m far from the GHE is not changed in accordance with the temperature of circulating water.

Measurement of the Surface Heat Transfer Coefficients for Freezing Time Prediction of Foodstuffs (식품의 동결시간 예측을 위한 표면열전달계수 측정)

  • Jeong, Jin-Woong;Kong, Jai-Yul;Kim, Min-Yong
    • Korean Journal of Food Science and Technology
    • /
    • v.21 no.6
    • /
    • pp.735-741
    • /
    • 1989
  • For the accurate prediction of freezing time, probably the most difficult factor to measure and major error source is the surface heat transfer coefficient. In this work, surface heat transfer coefficient were determined for still air freezing and immersion freezing methods by theory of the transient temperature method and confirmed by using a modification of plank's equation to predict the freezing time of ground lean beef. The results showed the cooling rate of immersion freezing was about 11 times faster than that of still air freezing method. A comparison of surface heat transfer coefficient of copper plate and ground lean beef resulted an difference of 25-30% because the food sample surface is not smooth as copper plate. Also, when h-values measured by ground lean beef were applicated to modified model, the accuracy of its results is very high as difference of about 8%.

  • PDF

Thermal Conductivity from an in-situ Thermal Response Test Compared with Soil and Rock Specimens under Groundwater-bearing Conditions (지하수 부존지역에서의 토질 및 암석 시료와 현장 열응답시험의 열전도도 비교)

  • Kim, Jin-Sung;Song, Sung-Ho;Jeong, Gyo-Cheol
    • The Journal of Engineering Geology
    • /
    • v.23 no.4
    • /
    • pp.389-398
    • /
    • 2013
  • Studies of the thermal properties of various rock types obtained from several locations in Korea have revealed significant differences in thermal conductivities in the thermal response test (TRT), which has been applied to the design of a ground-source heat pump system. In the present study, we aimed to compare the thermal conductivities of the samples with those obtained by TRT. The thermal conductivities of soil and rock samples were 1.32W/m-K and 2.88 W/m-K, respectively. In comparison, the measured TRT value for thermal conductivity was 3.13W/m-K, which is 10% higher than that of the rock samples. We consider that this difference may be due to groundwater flow because abundant groundwater is present in the study area and has a hydraulic conductivity of 0.01. It is natural to consider that the object of TRT is to calculate the original thermal conductivity of the ground, following the line source theory. Therefore, we conclude that the TRT applied to a domestic standing column type well is not suitable for a line source theory. To solve these problems, values of thermal conductivity measured directly from samples should be used in the design of ground-source heat pump systems.

International Harmonized Economic Assessment Study of a Ground Source Heat Pump System (국제 호환형 지열히트펌프 시스템 경제성 평가 연구)

  • Na, Sun-Ik;Kang, Eun-Chul;Lee, Euy-Joon
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.10 no.1
    • /
    • pp.7-13
    • /
    • 2014
  • This study intends to analyse the economical aspect of a GSHP(Ground Source Heat Pump) system compared to the conventional system which is consisted with a boiler and a chiller. This study has simulated four systems in Incheon. It developed and analyzed for applications in a residential and an office building which was based on the hourly EPI(Energy Performance Index, $kWh/m^2yr$). Case 1 is utilizing a boiler and a chiller to meet heating and cooling demand of a house. Case 2 is utilizing the same conventional set up as Case 1 of a office. Case 3 is summation of Case 1(house) and 2(office) systems and loads. And Case 4 is utilizing a GSHP to meet the combined loads of the house and office. The method of the economic assessment has been based on IEA ECBCS Annex 54 Subtask-C SPB(Simple Payback) method. The SPB calculated the economic balanced year of the alternative system over the reference system. The SPB of the alternative systems (GSHP) with 10%, 30% and 50% initial incentive has been calculated as 9.38, 6.72 and 4.06 year respectively while the SPB without initial incentive of systems was 10.71 year.

Estimation of Adequate Capacity of Ground Source Heat Pump in Energy-saving Pig Farms Using Building Energy Simulation (BES를 사용한 에너지 절감형 양돈장의 지열히트펌프 적정 용량 산정)

  • Lee, Seong-Won;Oh, Byung-Wook;Park, Kwang-Woo;Seo, Il-Hwan
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.64 no.1
    • /
    • pp.1-13
    • /
    • 2022
  • In Korea, attention is being paid to the use of renewable energy in the livestock industry, and Ground Source Heat Pump (GSHP), which is advantageous for temperature control, is considered as one of the ways to reduce the use of fossil fuels. But GSHP is expensive to install, which proper capacity calculation is required. GSHP capacity is related to its maximum energy load. Energy loads are affected by climate characteristics and time, so dynamic analysis is required. In this study, the optimal capacity of GSHP was calculated by calculating the heating and cooling load of pig farms using BES (Building Energy Simulation) and economic analysis was performed. After designing the inside of the pig house using TRNSYS, one of the commercial programs of the BES technique, the energy load was calculated based on meteorological data. Through the calculated energy load, three heating devices and GSHP used in pig farms were analyzed for economic feasibility. As a result, GSHP's total cost of ownership was the cheapest, but the installation cost was the highest. In order to reduce the initial cost of GSHP, the capacity of GSHP was divided, and a scenario was created in which some of it was used as an auxiliary heating device, and economic analysis was conducted. In this study, a method to calculate the proper capacity of GSHP through dynamic energy analysis was proposed, and it can be used as data necessary to expand the spread of GSHP.

Evaluating the Feasibility of a Ground Source Heat pump System for an Elderly Care Center through Simulation Approach (시뮬레이션을 통한 노인 요양 시설의 지열 히트펌프 시스템 적용 가능성 평가)

  • Byonghu Sohn;Young-Sun Kim;Seung-Eon Lee
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.19 no.4
    • /
    • pp.39-52
    • /
    • 2023
  • This study analyzes the energy performance of a elderly care center building and the applicability of a ground source heat pump (GSHP) system through simulation approach. For this purpose, a building information modeling (BIM) program and an energy performance calculation program were used. The impact of the mechanical ventilation system on the energy requirements of the heating and cooling system and the indoor environment was also analyzed, focusing on the change in indoor carbon dioxide (CO2) concentration, which is a representative indicator of the indoor environment (air quality). The simulation results showed that the target building exceeds Level 7 in terms of simulated primary energy consumption or actual energy consumption. In addition, it was analyzed that the target building could not maintain the indoor CO2 concentration below the standard concentration by natural ventilation through window opening alone. Combining the GSHP system with the mechanical ventilation system (Case B and Case C) can further reduce the overall energy consumption by reducing the amount of outdoor air introduced by opening windows. The cost savings compared to the baseline case are estimated to be 67.3% for Case A, 63.7% for Case B, 65.5% for Case C, and 42.5% for Case D. It is necessary to analyze the impact of various renewable energy technologies and passive ones on the energy performance and indoor environment of elderly care centers.

A Study on the Measurement of Thermal conductivity of Vertical Borehole heat Exchanger (수직형 지중열교환기 열전도도 측정기술에 관한 연구)

  • Kim, Ji-Young;Lee, Euy-Joon;Chang, Ki-Chang;Kang, Eun-Chul
    • Proceedings of the SAREK Conference
    • /
    • 2008.11a
    • /
    • pp.39-44
    • /
    • 2008
  • The heat exchange between the Borehole Heat Exchanger(BHE) and the surrounding ground depends directly on ground thermal conductivity k at the certain site. The k is thus a key parameter in designing BHE and coupled geothermal heat pump systems. Currently, although a thermal hydraulic response test(TRT) is mostly used in practice, the thermal hydraulic TRT needs additional power and is generally time-consuming. A new, simple wireless P/T probe for a hi-speed k determination was introduced in this paper. This technique using a wireless P/T probe is less time-consuming and requires no external source of energy for measurement and predicts local thermal properties by measuring soil temperatures along the depth. Measured temperature data along the depth was analyzed. In order to verify the new technique for the determination of ground thermal conductivity, ground thermal conductivity k that calculated from the measured temperature data using a wireless P/T probe was compared with one obtained from conventional hydraulic TRT. When comparing the average k of two methods, the relative error was approximately 10%. As a result, the electronic TRT can replace the conventional hydraulic TRT method after carrying out the additional research on a lot of sites.

  • PDF

Heating Performance Prediction of Low-depth Modular Ground Heat Exchanger based on Artificial Neural Network Model (인공신경망 모델을 활용한 저심도 모듈러 지중열교환기의 난방성능 예측에 관한 연구)

  • Oh, Jinhwan;Cho, Jeong-Heum;Bae, Sangmu;Chae, Hobyung;Nam, Yujin
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.18 no.3
    • /
    • pp.1-6
    • /
    • 2022
  • Ground source heat pump (GSHP) system is highly efficient and environment-friendly and supplies heating, cooling and hot water to buildings. For an optimal design of the GSHP system, the ground thermal properties should be determined to estimate the heat exchange rate between ground and borehole heat exchangers (BHE) and the system performance during long-term operating periods. However, the process increases the initial cost and construction period, which causes the system to be hindered in distribution. On the other hand, much research has been applied to the artificial neural network (ANN) to solve problems based on data efficiently and stably. This research proposes the predictive performance model utilizing ANN considering local characteristics and weather data for the predictive performance model. The ANN model predicts the entering water temperature (EWT) from the GHEs to the heat pump for the modular GHEs, which were developed to reduce the cost and spatial disadvantages of the vertical-type GHEs. As a result, the temperature error between the data and predicted results was 3.52%. The proposed approach was validated to predict the system performance and EWT of the GSHP system.

Experimental Study on the Cooling and Heating Operation Characteristics of a Sea Water Source Heat Pump (해수열원 히트펌프 시스템의 냉난방 운전 특성에 관한 실증 연구)

  • Kim, Ji-Young;Baik, Young-Jin;Chang, Ki-Chang;Ra, Ho-Sang
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.544-549
    • /
    • 2009
  • The purpose of this study is to investigate the field Operation Characteristics of a sea water heat source cascade heat pump system and system applicable to Building. Cascade heat pump system is composed R410A compressor, R134a compressor, EEV, cascade heat exchanger, Plate heat exchanger etc. Building area is $890m^2$ and has five floors above ground. R410A is used for a low-stage working fluid while R134a is for a high-stage. The system could runs at dual mode. One is mode of general R410A refrigeration cycle in summer and the other is cascade cycle. In order to gain a high temperature supply water in winter season, the system is designed to perform a cascade cycle. The filed test results show that the sea water heat source heat pump system exhibits a COP of about 5.5 in cooling mode along with a heating COP of about 4.0 in 1-stage heating mode. Cascade 2-stage heat pump system is enough to supply $60^{\circ}C$ water and heating COP is about 3.0

  • PDF

Study on Thermal Behavior and Design Method for Coil-type PHC Energy Pile (코일형 PHC 에너지파일의 열적 거동 및 설계법에 관한 연구)

  • Park, Sangwoo;Sohn, Jeong-Rak;Park, Yong-Boo;Ryu, Hyung-Kyou;Choi, Hangseok
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.8
    • /
    • pp.37-51
    • /
    • 2013
  • An energy pile encases heat exchange pipes to exchange thermal energy with the surrounding ground formation by circulating working fluid through the pipes. An energy pile has many advantages in terms of economic feasibility and constructability over conventional Ground Heat Exchangers (GHEXs). In this paper, a coil-type PHC energy pile was constructed in a test bed and its thermal performance was experimentally and numerically evaluated to make a preliminary design. An in-situ thermal response test (TRT) was performed on the coil-type PHC energy pile and its results were compared with the solid cylinder source model presented by Man et al. (2010). In addition, a CFD numerical analysis using FLUNET was carried out to back-analyze the thermal conductivity of the ground formation from the Ttype PHC energy RT result. To study effects of a coil pitch of the coil-type heat exchange pipe, a thermal interference between the heat exchange pipes in PHC energy piles was parametrically studied by performing the CFD numerical analysis, then the effect of the coil pitch on thermal performance and efficiency of heat exchange were evaluated. Finally, an equivalent heat exchange efficiency factor for the coil-type PHC energy pile in comparison with a common multiple U-type PHC energy pile was obtained to facilitate a preliminary design method for the coil-type PHC energy pile by adopting the PILESIM2 program.