• Title/Summary/Keyword: Ground grouting

Search Result 380, Processing Time 0.024 seconds

A Fundamental Study of a Neo-Grouting Technology for the Decreasing of a Ground Disaster in a High Water Pressure Conditions (고수압 조건에서의 지반재해 저감을 위한 최신 그라우팅 시공관리 기술 기초연구)

  • Kim, Jin-Chun;Yoo, Byung-Sun;Kang, Hee-Jin;Kwon, Young-Sam
    • Journal of Korean Society of Disaster and Security
    • /
    • v.7 no.1
    • /
    • pp.9-16
    • /
    • 2014
  • In the high water pressure construction conditions, it is important that the failures and damages occurrence in the neighboring ground and impermeable prevention methods (design and construction) for a inflow of seawater into structures. Grouting construction markets include a subway construction, a railway construction, a mountain tunnel construction, a new & reinforced construction of river & reservoir levee with big budget per every years. but, there are economic loss about design and construction management parts because that management criteria is not accurate but depends on experiences. Even though grouting technology are using vitally in the major constructions of national levels, it is still serious about the low-reliability problems and the no-criteria problems. therefor the purpose of this study is that provides the fundamental research about the neo-grouting technology for the decreasing of ground disaster in a high water pressure conditions.

A Study of Stability Evaluation for Tunnel at the Fault Zone Crossing (단층대를 통과하는 터널의 안정성확보에 관한 연구)

  • 박인준;최정환;김수일
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.03a
    • /
    • pp.105-112
    • /
    • 2001
  • The purpose of this study is to assess the stability of tunnel for a high speed railway crossing the fault zone. The area where the tunnel crossed the fault zone can be unstable during construction and operation. Geotechnical investigations have been conducted to determine an optimum excavation method by obtaining the material properties around the fault zone and to check the stability of the tunnel. For the numerical analysis, the FLAC, numerical analysis code based on finite difference method, was utilized to analyze the behavior of the fault at three points having typical ground conditions. Based on the results of numerical analysis, the combinations of compaction grouting and LW grouting were determined as suitable methods for pre-excavation Improvement of the ground surrounding the tunnel opening. In conclusion, the stability of the tunnel construction for the high speed railway within the fault zone may be obtained by adopting the optimum excavation method and the reinforcement method. The numerical analysis based on FLAC program contains errors caused by assumptions used in numerical analysis, therefore constant monitoring with respect to the change of ground condition and groundwater is highly recommended to minimize the numerical error and the possibility of damage to tunnel.

  • PDF

Experimental Study on Enhanced Jet Grouting by Cavitation Theory (공동현상 이론을 고압분사주입공법에 적용하기 위한 실험적 연구)

  • Lee Sang-Ik;Kim Chang-Jong;Oh Se-Hun;Kim Young-Uk
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.1
    • /
    • pp.43-50
    • /
    • 2005
  • Jet grouting method is widely being used in many geotechnical problems, especially for the purpose of reinforcement of clayey ground and cut-off wall of sandy ground. However, its design depends on highly empirical method, in which many researches have been undertaken. This study investigated the effect of cavitation on jet grouting. Small-scaled model tests were carried out using specially designed and fabricated device to analyze the effect of cavitation on jet grouting with various test conditions including ground condition, injection pressure, and injection time. The test results show that cavitation has a significant effect on jet grouting, and it has a potential for engineering application.

Evaluation on in-situ Thermal Performance of Coaxial-type Ground Heat Exchanger with Different Configurations (이중관형 지중열교환기 구성에 따른 현장 열성능 평가)

  • Lee, Seokjae;Jung, Hyun-seok;Oh, Kwanggeun;Park, Sangwoo;Choi, Hangseok
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.15 no.4
    • /
    • pp.8-15
    • /
    • 2019
  • In order to design coaxial-type Ground Heat Exchangers (GHEXs) efficiently, the effect of components (i.e, heat exchange pipe and grouting material) on the thermal performance of coaxial-type GHEXs should be identified in advance. In this paper, three coaxial-type GHEXs with different configurations were constructed in a test bed. Then, the effect of heat exchange pipes and grouting materials on the thermal performance of coaxial-type GHEXs was investigated by performing in-situ thermal response tests (TRTs) and thermal performance tests (TPTs). In the TRTs, the effective thermal conductivities of the coaxial-type GHEXs with concrete grouting and STS pipes were improved by 6.15 and 22.7%, respectively compared to those of bentonite grouting and HDPE pipes. Additionally, in the TPTs, the use of concrete grouting and STS pipes in the coaxial-type GHEXs enhanced the in-situ thermal performance by 15 and 33.8%, respectively.

Evaluation of Ground Effective Thermal Conductivity and Borehole Effective Thermal Resistance from Simple Line-Source Model (단순 선형열원 모델을 이용한 지중 유효 열전도도와 보어홀 유효 열저항 산정)

  • Sohn, Byong-Hu
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.7
    • /
    • pp.512-520
    • /
    • 2007
  • The design of a ground-source heat pump system includes specifications for a ground loop heat exchanger where the heat transfer rate depends on the effective thermal conductivity of the ground and the effective thermal resistance of the borehole. To evaluate these heat transfer properties, in-situ thermal response tests on four vertical test boreholes with different grouting materials were conducted by adding a monitored amount of heat to circulating water. The line-source method is applied to the temperature rise in an in-situ test and extended to also give an estimate of borehole effective thermal resistance. The effect of increasing thermal conductivity of the grouting materials from 0.818 to $1.104W/m^{\circ}C$ resulted in overall increases in effective thermal conductivity by 15.8 to 56.3% and reductions in effective thermal resistance by 13.0 to 31.1%.

Countrol of Groundwater by Clay Grouting in Undergroun Excavation of Oil Storage Caverns (원유 저장용 지하공동의 건설중 점토 그라우팅에 의한 지하수 제어)

  • 김치환;박창우;이석천
    • Tunnel and Underground Space
    • /
    • v.3 no.1
    • /
    • pp.24-32
    • /
    • 1993
  • Groundwater movement is one of the most important elements in the construction and management of underground oil storage cavern. To control the groundwater flow, grouting is run in parallel with water curtains. But as traditional grouting is conducted within cavern before and after excavation, the effect of grouting is delayed and the injection sphere is limited in the rock mass. Therefore, it is desirable to introduce a more extensive and effective grouting. This article is to present the caly grouting, which was the first to be carried out in the construction of underground caverns for oil storage in Japan. After conducting the clay grouting, the effect was confirmed by ground water level and infiltration quantity to the caverns.

  • PDF

A Study on the Impermeability of Ground using N.D.S and S.M.I methods (N.D.S공법과 S.M.I공법을 이용한 지반차수 방법에 관한 연구)

  • Kim, Ji-Hwan;Kim, Joon-Jeong;Cho, Kook-Hwan
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.11 no.2
    • /
    • pp.87-92
    • /
    • 2011
  • This paper describes a study on the permeability reduction of the riverbed ground during urban railway tunnel construction. The research is mainly concentrated on the study of the grouting or injection methods among permeability reduction methods which can be adapted in the riverbed ground. The design technology of grouting methods considering the long term hydro-geological behaviour in the riverbed, was suggested. Two injection methods namely, Natural Durable Stabilizer (N.D.S) and Space-Multi Injection Grouting (S.M.I) methods, were introduced as new approach methods which could be adapted to modify the riverbed ground. In order to evaluate the performance of the improved ground by the N.D.S and S.M.I method, a series of pilot tests including the field and laboratory permeability tests, were carried out in the river crossing tunnel construction sites. The results obtained from pilot test program, were also reviewed. The results, the grouting efficiency of the S.M.I method using the non-alkalimeter silica sol is better than that of N.D.S method using cement. In addition, it is anticipated that the current research results are contributed to develop the grouting design technology.

Development of New Micro-Cement Grouting Materials for Tunneling (터널 보강용 고성능 침투 주입재 연구개발)

  • Lim, Yu-Jin;Lee, Kang-Ho;Kim, Hyung-Kyum;Hong, Chang-Soo;Ahn, Joon-Hee
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.1559-1570
    • /
    • 2008
  • A new grouting material named 3S is developed that can be used effectively for reinforcing cut surface of weathered rock in processing of tunneling. The new material is composed of mostly micro slag cement and general Portland cement, but the material is foundered again upto $8,000\;cm^2/g$ of specific area so that it can be easily infiltrated in to the ground. For verifying technical and engineering quality of the material several laboratory tests with specially designed test apparatus were performed including compression tests, infiltration tests and resonant column tests. It was verified that the newly developed grouting material at early age of 1 or 3 days generates 200~1500% higher compressive strength and 400~560% larger elastic modulus than those of the LW(LW-1) or micro-cement(LW-2) grouting materials in the market. In addition, the new 3S grouting material could be so easily infiltrated into the model ground in the lab tests that it produces 4 times larger grouted roots in average compared to the usual water glass type grouting material(LW-1). Thus, it can be said that the newly developed grouting material can effectively prevent inflow water into tunnel compared to LW grouting materials.

  • PDF

A Study on the Ground Reinforcement and Impermeable Effect by McG (McG(맥) 주입공법에 의한 지반보강 및 차수효과에 관한 연구)

  • Jung, Jong-Ju;Do, Kyung-Yang;Shin, Tai-Wook;Park, Won-Chun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.10a
    • /
    • pp.581-590
    • /
    • 2005
  • The grouting method is widely used as the impermeable effect and ground reinforcement in construction. But, it has a problem that cement and grout material are not mixed well in the injection tip equipment and an opposite flow and interception state of the chemical grouting is happened. so, continuous work is difficult. McG method installed a special grouting and device, made possible go well mixing of grouting material and prevent flowing backward and block of nozzle also diversify powder rate of cement that is grouting material to select sutible material in layer conditions. YSS that lowered $Na_2O$ influencing durability and circumstance is developed by gel-forming reaction material. so eco-circumstance and durability is increased by minimizing dissolution of underground water. In this study, it is assumed that seepage state of the injection material using a special injection tip equipment and a unconfined compressive strenth by mixing a various injection material of various. And it is confirmed that strenth increase effect and permeable decrease of the improved body through the test execution and field execution.

  • PDF

Pullout Characteristics of Pressure Reinjection-Grouted Reinforcements in Decomposed Granite Soil (화강풍화토 지반에 설치된 압력재주입 그라우팅 보강재의 인발특성)

  • Shim, Yong-Jin;Lee, Jong-Kyu;Lee, Bong-Jik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.11
    • /
    • pp.61-68
    • /
    • 2012
  • Most widely methods for reinforcement of soil utilized in Korea are anchor method, soil nail method and micro pile method. These methods are classified by the intended use of the structure to be constructed, but the reinforcement of the ground is accomplished contains in common the process of grouting work after inserting the reinforcements. Domestically, gravity grouting has been used mostly so far, but there has always been the risk of insufficient restoration of the loose ground area from the drill holes because the grouting is conducted only by gravity. On the other hand, pressure reinjection grouting may enhance the grouting quality by solving the problem of the existing grouting method considerably since it additionally reinjects grouting through pre-installed tube a certain time after the first grouting. Accordingly, this study evaluated the pullout characteristics by the grouting methods by performing model test on decomposed granite soil, and investigated the support increasing characteristics of reinforcements depending on the curing time, reinjection pressure, and uplift force variation of the pressure reinjection grouting. The result of this research shows that the pressure reinjection grouting demonstrated 1.1~1.3 times of performance of the gravity grouting, and suggests some analysis on optimal water content, reinjection pressure and curing time of the pressure reinjection grouting.