• Title/Summary/Keyword: Ground grouting

검색결과 378건 처리시간 0.033초

점성토 연약지반에서의 다중 동시주입 컴팩션 그라우팅 공법 적용성 연구 (Study on Applicability of Simultaneous Multiple Compaction Grouting Method in Soft Clay Ground)

  • 이효범;정현석;정의엽;최항석
    • 대한토목학회논문집
    • /
    • 제39권6호
    • /
    • pp.779-788
    • /
    • 2019
  • 컴팩션 그라우팅 공법, 일명 CGS (Compaction Grouting System) 공법은 저유동성 그라우트재의 주입을 통해 주변 지반을 압밀·다짐하여 원지반의 물성 향상은 물론 지중 그라우트 구근체의 형성을 통해 복합지반 거동을 기대함으로써 지반을 개량하는 공법이다. 그러나 기존 컴팩션 그라우팅 공법에 사용되는 펌프는 한 번에 여러 공을 동시에 주입하기 어려워 시공 물량이 많아 신속함이 요구되는 공사 시에 시공 효율성 확보가 어려웠다. 따라서 본 논문에서는 3공까지 동시주입이 가능한 다중 동시주입 컴팩션 그라우팅 공법을 개발하여 현장시험을 통해 지반 보강효과의 적용성을 평가하였다. 현장시험은 점성토 연약지반에 단일공과 3공 삼각 배열로 각각 시험시공하고 그라우팅 주입 전·후 표준관입시험(SPT)을 수행하여 그 결과를 비교·분석하였다. 최종적으로 점성토 연약지반에서 다중 동시주입 컴팩션 그라우팅 공법의 적용 시, 요구되는 적정 동시주입 이격거리와 충분한 지반 안정화 시간 확보의 중요성에 대해 제언하였다.

Numerical evaluation of surface settlement induced by ground loss from the face and annular gap of EPB shield tunneling

  • An, Jun-Beom;Kang, Seok-Jun;Kim, Jin;Cho, Gye-Chun
    • Geomechanics and Engineering
    • /
    • 제29권3호
    • /
    • pp.291-300
    • /
    • 2022
  • Tunnel boring machines combined with the earth pressure balanced shield method (EPB shield TBMs) have been adopted in urban areas as they allow excavation of tunnels with limited ground deformation through continuous and repetitive excavation and support. Nevertheless, the expansion of TBM construction requires much more minor and exquisitely controlled surface settlement to prevent economic loss. Several parametric studies controlling the tunnel's geometry, ground properties, and TBM operational factors assuming ordinary conditions for EPB shield TBM excavation have been conducted, but the impact of excessive excavation on the induced settlement has not been adequately studied. This study conducted a numerical evaluation of surface settlement induced by the ground loss from face imbalance, excessive excavation, and tail void grouting. The numerical model was constructed using FLAC3D and validated by comparing its result with the field data from literature. Then, parametric studies were conducted by controlling the ground stiffness, face pressure, tail void grouting pressure, and additional volume of muck discharge. As a result, the contribution of these operational factors to the surface settlement appeared differently depending on the ground stiffness. Except for the ground stiffness as the dominant factor, the order of variation of surface settlement was investigated, and the volume of additional muck discharge was found to be the largest, followed by the face pressure and tail void grouting pressure. The results from this study are expected to contribute to the development of settlement prediction models and understanding the surface settlement behavior induced by TBM excavation.

지중열교환기 설치 조건이 지중 유효 열전도도에 미치는 영향 (Effect of Some Parameters on Ground Effective Thermal Conductivity)

  • 최재호;임효재;공형진;손병후
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2008년도 동계학술발표대회 논문집
    • /
    • pp.33-38
    • /
    • 2008
  • A ground-loop heat exchanger in a ground source heat pump system is an important unit that determines the thermal performance of a system and its initial cost. The Size and performance of this heat exchanger is highly dependent on ground thermal properties. A proper design requires certain site-specific parameters, most importantly the ground effective thermal conductivity, the borehole thermal resistance and the undisturbed ground temperature. This study was performed to investigate the effect of some parameters such as borehole lengths, various grouting materials and U-tube configurations on ground effective thermal conductivity. In this study, thermal response tests were conducted using a testing device with 9-different ground-loop heat exchangers. From the experimental results, the length of ground-loop heat exchanger affects to the effective thermal conductivity. Among the various grouting materials, the bentonite-based grout with silica sand shows the largest thermal conductivity value.

  • PDF

압력식 쏘일네일링의 인발저항력 증가: 이론적 검증 (Pullout Resistance Increase in Soil-Nailing with Pressurized Grouting: Verification of Theoretical Solution)

  • 서형준;박성원;정경한;최항석;이인모
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2009년도 춘계 학술발표회
    • /
    • pp.419-433
    • /
    • 2009
  • Pressure grouting is a common technique in geotechnical engineering to increase the stiffness and strength of the ground mass and to fill boreholes or void space in a tunnel lining and so on. Recently, the pressure grouting has been applied to a soil-nailing system which is widely used to improve slope stability. The soil-nailing design has been empirically performed in most geotechnical applications because the interaction between pressurized grouting paste and the adjacent ground mass is complicated and difficult to analyze. The purpose of this study is to analyze the increase of pullout resistance induced by pressurized grouting with the aid of performing laboratory model tests and field tests. In this paper, two main causes of pullout resistance increases induced by pressurized grouting were verified: the increase of residual stress; and the increase of coefficient of pullout friction. From the laboratory tests, it was found that residual stress in borehole increases by pressurized grouting and dilatancy angle could be estimated by cavity expansion theory using the measured wall displacements. From the field test results, the pullout resistance of soil-nailing with pressurized grouting was found to be 10% larger than that of soil-nailing with gravitational grouting, mainly caused by mean normal stress increase and dilatancy effect. So, the pullout resistance could be estimated by considering these two effects. The radial displacement increases with dilatancy angle increase and the dilatancy angle decreases with injection pressure increase. The measured pullout resistance obtained from field tests is in good agreement with the estimated one from the cavity expansion theory.

  • PDF

제주도 지하수관정의 오염저감방안 (Improvement Method for Preventing Groundwater Pollution in Jeju Island)

  • 양성기;한상철
    • 한국환경과학회지
    • /
    • 제16권6호
    • /
    • pp.735-743
    • /
    • 2007
  • A grouting method is the way to effectively prevent pollutants from spreading into the ground during the digging process of groundwater. This study, based on the comparative study of grouting methods being generally accepted, suggests various construction methods which are suitable for geological structure as follows: In Jeju Island, it is very likely that rocks may fall in shuttered zones such as cracks, joints, scoria layers, and clinker layers. For this reason, it is recommended that materials be injected from the bottom toward the top, not from the top to the bottom. In the case where the amount of injected materials become too large in the areas of cracks or joints because of high level of permeability coefficient, grouting materials which smeared into surrounding areas may cause unwanted cut in the aquifer of the bottom level. To avoid this, the amount of water should be reduced from the typical water-cement ratio of 1:2, and grouting materials with larger grading should be used. If the deep excavation of ground is made in Jeju Island, it is likely to have lots of voids because of geological characteristics. Based on the results of this research, it is found that to construct interior casing, the centralizer should be attached to the casing to prevent the casing from being in contact with the counter fort. The grouting in Jeju Island should be thicker than usual. To avoid over-use of grouting materials, to prevent grouting in more than necessary zone, and to facilitate grouting of void areas, the flexible selection of materials is required. And, to exactly figure out the interior of dug well, an examination through CCTV should necessarily be performed when grouting work is in progress.

매립토층에서 CGS에 의한 지반개량특성에 관한 연구 (Characteristics of Ground Improvement by Compaction Grouting System in Filled Ground)

  • 천병식;여유현;정영교;정완균;정의원;김우종
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2001년도 봄 학술발표회 논문집
    • /
    • pp.425-432
    • /
    • 2001
  • Compaction Grouting System, the method which makes ground compact by injection of low slump mortar, Is widely used for reinforcement of soft ground, restoration of structures happened differential settlement, underpinning and restoration of damaged dam core. The quantitive analysis of ground improvement for this method has not performed yet. So, design parameters about thls method must be studied through performance of CGS in various types of soil to make CGS adaptable widely. In this study PBT, SPT and field density test were performed for analysis of the characteristics of ground improvement and pressuremeter and inclinometer were installed for analysis of the characteristics of compaction in adjacent ground. In this paper, denoted much effects for filled ground that increasing of the bearing capacity, confirming the displacement of adjacent ground and the effective radius of injection.

  • PDF

저유동성 몰탈주입 적용지반의 거동에 관한 연구 (A Study on the Deformation of Ground by the Low Slump Mortar Grouting)

  • 도종남;이진규;천병식
    • 한국지반환경공학회 논문집
    • /
    • 제11권10호
    • /
    • pp.5-13
    • /
    • 2010
  • 저유동성 몰탈주입은 구조물기초의 보강이나 연약지반 개량 등에 폭넓게 쓰이고 있으며, 작업 공간이 협소한 경우도 주변여건에 크게 구속받지 않고 시공할 수 있는 등 매우 유리한 특징을 가지고 있다. 그러나 현재 저유동성 몰탈주입공법의 설계단계에서 적용할 수 있는 개량효과 및 영향 반경에 대한 예측방법과 이에 대한 검증이 이루어지지 않아 지반보강공법으로써의 다양한 적용을 위하여 이에 대한 정립이 필요하다. 본 연구에서는 매립토층에서 저유동성 몰탈주입 후 현장시험을 실시하여 주입에 의한 지반개량효과를 확인하고, 이를 기존의 제안된 개량효과에 대한 이론식으로 계산된 값과 비교함으로써 이론식의 적용성을 평가하고자 하였다. 연구결과, 저유동성 몰탈주입에 의해 개량효과가 매우 우수함을 확인할 수 있었으며, 이를 기존의 이론식과 비교한 결과 서로 유사한 결과를 나타내어 연구대상 현장과 유사한 느슨한 사질토의 경우 기존의 이론식은 적용성이 양호한 것으로 판단된다.

가압 그라우팅 쏘일네일링의 인발저항력 증가 원인에 관한 연구 (A Study on Pullout-Resistance Increase in Soil Nailing due to Pressurized Grouting)

  • 정경한;박성원;최항석;이충원;이인모
    • 한국지반공학회논문집
    • /
    • 제24권4호
    • /
    • pp.101-114
    • /
    • 2008
  • 압력식 그라우팅은 지반 보강의 대표적인 공법 중 하나이며, 최근에는 사면 안정 공법으로 널리 사용되는 쏘일네일링에도 적용되고 있다. 그러나 가압 그라우팅 쏘일네일링 공법은 가압에 따른 그라우트와 지반 사이의 메커니즘이 매우 복잡하여 대부분 경험적인 설계가 이루어지고 있는 실정이다. 본 연구는 가압 그라우팅 쏘일네일링의 실내 모형실험, 현장시험 및 수치모델의 분석을 통해 그라우트와 주변 지반의 상호 거동을 평가하고, 이를 통해 인발저항력을 발휘하는 원인을 고찰하는데 그 목적이 있다. 실내 모형실험은 화강풍화토에 대해 수행하였으며, 그라우트 가압에 따라 초기에는 membrane 모델과 같이 공벽에 큰 압력이 작용하였으나, 점차 그라우트 내의 물이 주변지반으로 침투하면서 잔류응력까지 감소하는 것을 확인하였다. 이 때, 주입초기에 50%였던 물-시멘트비는 약 30%까지 감소하였으며, 이를 통한 그라우트의 강성 증가로 변위회복의 감소 및 주입압의 약 20%에 해당하는 잔류응력이 확인되었다. 또한 가압시 발생 변위를 측정하여, 그 값을 공팽창이론에 의한 값과 비교하였으며 그 결과는 대체적으로 일치하였다. 현장 시험 역시 풍화토에서 수행되었으며, 가압 그라우팅 쏘일네일링의 인발저항력이 중력식보다 약 36% 더 큰 것으로 나타났다. 이는 유효경 증가효과 약 24%, 기타, 잔류응력 및 구근 거칠기 증가 효과 약 10%에 기인함을 알 수 있었다.

GSHP용 수직형 지중열교환기의 열전달 성능에 관한 연구 (A Study on Heat Transfer Performance of Vertical Ground Heat Exchanger of GSHP(Ground Source Heat Pump))

  • 정민호;장기창;나호상;백영진;박성룡;유성연
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.2102-2107
    • /
    • 2007
  • GSHP systems are used for air-conditioning systems in commercial buildings, schools, and factories because of low operating and maintenance costs. These systems use the earth as a heat source in heating and a heat sink in cooling mode. Ground heat exchangers are classified by a horizontal and vertical type according to the installation method. Vertical type is usually constructed by placing small diameter high density polyethylene tube in a vertical borehole. Vertical tube sizes range from 20 to 40 mm nominal diameter. Borehole depth range between 100 and 200 m depending on local drilling conditions and available equipment. In this study, to evaluate the performance of single u-tube with bentonite grouting, single u-tube with broken stone grouting and double u-tube bentonite grouting of vertical ground heat exchangers, test sections are buried on the earth and experimental apparatus is installed. Therefore the heat transfer performance and pressure loss of these are estimated.

  • PDF

지반보강용 마이크로시멘트의 기초적 특성 (A Fundamental Properties of Microcement in Earth Concreting)

  • 김진춘;최광일;박재용
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1994년도 가을 학술발표회 논문집
    • /
    • pp.217-222
    • /
    • 1994
  • Generally speaking, grouting on the base stabilizes the ground as the aspects of mechanic and engineering properties, with drilling hole at any depth of the earth, and pressuring the cement milk or special chemical grouting material in it. The purpose of grouting on the base is waterproofness and solidification of the ground by earth concreting that the cement milk pass through paticles of soil or crack of rock. This report shows the fundamental properties of microcement compared with those of ordinary portland cement in a point of grouting. It also describes that experimental applications on the treatment of the weathered rock at the constructior of Taegu subway and Boryong earth filled dam site, south of chungchung province, resulted in success.

  • PDF