• Title/Summary/Keyword: Ground granulated blast furnace slag

Search Result 375, Processing Time 0.022 seconds

Mechanical characteristics of high-performance concrete shield segment containing ground granulated blast furnace slag and their improvement by steam curing (고성능 쉴드 세그먼트용 고로슬래그 미분말을 혼입한 콘크리트의 역학적 특성 및 증기양생 효과 분석)

  • Kim, Byoung-Kwon;Lee, Jin-Seop;Lee, Gyu-Phil;Chang, Soo-Ho;Bae, Gyu-Jin
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.13 no.3
    • /
    • pp.233-242
    • /
    • 2011
  • This study aims to evaluate the applicability of high-strength concrete mixed with blast furnace slag to shield segment lining in order to improve its performance and economic efficiency. Especially, it was also intended to derive the optimum replacing ratio of ground granulated blast furnace slag to ordinary cement as well as the optimum steam curing condition for shield segment concrete with the design strength of 60 MPa. From a series of experiments, the condition of 50% replacement of ordinary cement by ground granulated blast furnace slag and unit water content of 125 kg/$m^3$ was proposed as the optimum mixing condition. Comparing with standard curing conditions, it was also possible to expect approximately 110~442% strength improvement of concrete by steam curing in the same mixing condition.

Evaluation on Surface Scaling and Frost Resistance for concrete Deteriorated due to Cyclic Freezing and Thawing with Inherent Chloride

  • Kim, Gyu Yong;Cho, Bong Suk;Lee, Seung Hoon;Kim, Moo Han
    • Corrosion Science and Technology
    • /
    • v.6 no.4
    • /
    • pp.177-185
    • /
    • 2007
  • The purpose of this study is to evaluate freezing-thawing and surface scaling resistance in order to examine the frost durability of concrete in a chloride-inherent environment. The mixing design for this study is as follows: 3 water binder ratios of 0.37, 0.42, and 0.47; 2-ingredient type concrete (50% OPC concrete and 50% ground granulated blast-furnace slag), and 3-ingredient type concrete (50% OPC concrete, 15% fly ash, and 35% ground granulated blast-furnace slag). As found in this study, the decrease of durability was much more noticeable in combined deterioration through both salt damage and frost damage than in a single deterioration through either ofthese; when using blast-furnace slag in freezing-thawing seawater, the frost durability and surface deterioration resistance was evaluated as higher than when using OPC concrete. BF 50% concrete, especially, rather than BFS35%+FA15%, had a notable effect on resistance to chloride penetration and freezing/expansion. It has been confirmed that surface deterioration can be evaluated through a quantitative analysis of scaling, calculated from concrete's underwater weight and surface-dry weight as affected by the freezing-thawing of seawater.

Properties of the Flowability and Strength of Cementless Alkali-Activated Mortar Using the Mixed Fly Ash and Ground Granulated Blast-Furnace Slag (플라이애쉬와 고로슬래그 미분말의 혼합 사용한 무시멘트 알칼리 활성 모르터의 유동성 및 강도 특성)

  • Koh, Kyung-Taek;Ryu, Gum-Sung;Lee, Jang-Hwa
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.4
    • /
    • pp.114-121
    • /
    • 2010
  • Portland cement production is under critical review due to high amount of CO2 gas released to the atmosphere. Attempts to increase the utilization of a by-products such as fly ash and ground granulated blast-furnace slag to partially replace the cement in concrete are gathering momentum. But most of by-products is currently dumped in landfills, thus creating a threat to the environment. Many researches on alkali-activated concrete that does not need the presence of cement as a binder have been carried out recently. However, most study deal only with alkali-activated ground granulated blast furnace slag or fly ash, as for the combined use of the both, little information is reported. In this study, we investigated the influence of mixture ratio of fly ash/ blast furnace slag tand curing condition on the flowability and compressive strength of mortar in oder to develop cementless alkali-activated concrete. In view of the results, we found out that the mixture ratio of fly ash/blast furnace slag always results to be significant factors. But the influence of curing temperature in the strength development of mortar is lower than the contribution due to other factors. At the age of 28days, the mixture 50% fly ash and 50% ground granulated blast furnace slag activated with 1:1 the mass ratio of 9M NaOH and sodium silicate, develop compressive strength of about 65 MPa under $20^{\circ}C$ curing.

  • PDF

A Experimental Study on the Strength Improvement of Ground Granulated Blast Furnace Slag Concrete Using Recycled Aggregate Powder as Alkali-activator (순환골재 미분말을 알칼리 자극제로 활용한 고로슬래그 미분말 혼입 콘크리트의 강도증진에 관한 실험적 연구)

  • Jeon, Chan-Soo;Ryu, Dong-Wo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.17 no.6
    • /
    • pp.527-534
    • /
    • 2017
  • Accordingly, this study, in order to use powder of recycled aggregate from production of recycled aggregate as an activator of ground granulated blast furnace slag, the influence of added recycled aggregate powder on physical properties of concrete induced ground granulated blast furnace slag were analyzed by hydration stages. The results of the study are summarized as follows: Except for samples eluted powder of recycled aggregate 1%, all the samples were high alkali suspensions with higher than pH 12.0. In particular, when eluted time was 5 hours, the sample eluted powder of recycled aggregate 3% showed about 15 mg/l of calcium hydroxide that was not different from the amount of calcium hydroxide in the mixing water eluted powder of recycled aggregate 5%. Hence, from this results, it can be considered that optimal eluted powder of recycled aggregate was 3% in this study. When using mixing water eluted with powder of recycled aggregate, compared to use of ordinary mixing water, it showed greater compressive strength in the entire ages, and in the sample replaced with ground granulated blast furnace slag by 50%, its compressive strength was greater than that of the OPC. As use of mixing water eluted with powder of recycled aggregate in concrete used with large amount of ground granulated blast furnace slag was more effective for improving compressive strength than ordinary mixing water, it is verified that powder of recycled aggregate had an effect of activator.

Development and Application of Concrete using Ground Granulated Blast Slag in Winter Season (동절기 슬래그 혼입 콘크리트의 실용화기술개발)

  • Yoo, Jo-Hyeong;Kim, Woo-Jae;Hong, Seok-Beom
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.05a
    • /
    • pp.256-257
    • /
    • 2014
  • Concrete made with ground granulated blast-furnace slag(GGBS) has many advantage, including improved durability, workability and economic benefits. GGBS concrete is that its strength development is considerably slower under standard 20℃ curing conditions than that of portland cement concrete, although the ultimate strength is higher for same water-binder ratio. GGBS is not therefore used in application where high early age strength is required. However, hydration of GGBS is much more sensitive to temperatures, the strength development of GGBS concrete is significantly enhanced.

  • PDF

A Study on the Utilization of mineral Admixture to Improve the Properties of Concrete (콘크리트의 제 성질 향상을 위한 혼화재 활용에 대한 연구)

  • 문한영;문대중;신화철
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.04a
    • /
    • pp.124-128
    • /
    • 1997
  • In order tohave a betterunderstanding of thefavorable effect ofground granulated blast-furnace slag and fly ash, slump loss, temperature risingand compressive strength of concrete were investigated into diffrent conditions. When slag was mixed with ordinary portland cement as30%, slump loss gotto some 18% at 60min, maximum temperatureto some $43^{\cire}C$ at 180min, compressive strength similar to that of ordinary portland concrete at 28 days. Therefore it wasnoted thatslump loss andmaximum teaperaturerising of concrete were very reduced according to ground granulated blast-furnace slag and fly ash mixed with ordinary portland cement.

  • PDF

Effect of curing temperature on the properties of ground granulated blast furnace slag-cement bentonite slurry

  • Kim, Taeyeon;Lee, Bongjik;Hong, Seongwon
    • Geomechanics and Engineering
    • /
    • v.29 no.3
    • /
    • pp.237-247
    • /
    • 2022
  • To investigate the curing temperature effect on the engineering properties of ground granulated blast furnace slag-cement bentonite (GGBS-CB) slurry for cutoff walls, the laboratory experiments including the setting time, unconfined compressive strength, and permeability tests were carried out. The mixing procedure for GGBS-CB slurry was as follows: (1) montmorillonite-based bentonite slurry was first fabricated and hydrated for four hours, and (2) cement or GGBS with cement was added to the bentonite slurry. The dosage range of GGBS was from 0 to 90 % of cement by mass fraction. The GGBS-CB slurry specimens were cured and stored in environmental chamber at temperature of 14±1, 21±1, 28±1℃ and humidity of 95±2% until target days. The highest average temperature of three seasons in South Korea was selected and used for the tests. The experimental results indicated that in early age (less than 28 days) of curing the engineering properties of GGBS-CB slurry were primarily affected by the curing temperature, whereas the replacement ratio of GGBS became a main factor to determine the properties of the slurry as the curing time increased.

Evaluation of Compressive Strength of Mortar Replaced to High Volume Blast Furnace Slag (고로슬래그 미분말을 다량 치환한 모르타르의 압축강도 평가)

  • Lee, Bo-Kyeong;Kim, Gyu-Yong;Lee, Se-Bum;Lee, Byoung-Cheon;Shin, Kyoung-Su;Kim, Hong-Seop
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.11a
    • /
    • pp.103-105
    • /
    • 2012
  • With blast-furnace slag is a by-product generated when pig iron is produced. It has been used as the concrete admixture due to high reactivity. However, It causes low strength development during early age. In order to make up for this drawback, in this study, we evaluated compressive strength of mortar replaced with high volume blast-furnace slag. Experimental results, Compressive strength of mortar based on blast-furnace slag is affected by cement type, substitution rate of blast-furnace slag and pH after mixing.

  • PDF

Compressive Strength and Resistance to Freezing and Thawing of Recycled Aggregate Concrete Containing Ground Granulated Blast Furnace Slag (고로슬래그 미분말을 혼입한 순환골재 콘크리트의 압축강도 및 동결융해 저항성)

  • Bae, Suho;Jeon, Juntai
    • Journal of the Society of Disaster Information
    • /
    • v.9 no.4
    • /
    • pp.469-475
    • /
    • 2013
  • The purpose of this experimental research is to estimate compressive strength and resistance to freezing and thawing of recycled aggregate concrete containing ground granulated blast furnace slag. For this purpose, concrete specimens according to substitution ratio of recycled aggregate were made for different replacement ratio of ground granulated blast furnace slag(GGBFS), and then compressive strength and resistance to freezing and thawing were evaluated for those. It was observed from the test results that compressive strength at 28 days of recycled aggregate concrete containing GGBFS of 20% was much more excellent than plain concrete and when air content of concrete was maintained 4 to 6%, influence of substitution ratio of recycled aggregate and replacement ratio of GGBFS on resistance to freezing and thawing was little up to 300 cycles of freezing and thawing.

The properties of High Performance Concrete Using Fly Ash and Blast-Furnace Slag (플라이애쉬 및 고로슬래그를 사용한 고성능콘크리트의 특성)

  • 이승한;정용욱;박정준
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10a
    • /
    • pp.275-280
    • /
    • 1998
  • In this study, to increase fluidity and resistance of segregation of materials, the effect of each of the materials, which have effects on high performance concrete from investigating the properties of strength and drying shrinkage of high performance concrete made by the basic mix proportion used fly-ash and ground granulated blast-furnace slag after hardening, has been checked. By the results of this experiment, fluidity on W/C=34% was satisfied within slump-flow 65$\pm$5cm and U-type self-compacting difference 5cm. On the properties of strength, high performance concrete produced compressive strength over 400kg/$\textrm{cm}^2$ in 28days when powder was replaced by 40% of fly-ash and 60% of ground granulated blast-furnace slag. And compressive strength was taken over 600kg/$\textrm{cm}^2$ equal to non-replacement in 91days. Also, the length change of concrete with the addition of fly-ash was smaller than that without it. Therefore, it may be effective on the decrease of drying shrinkage volume.

  • PDF