• 제목/요약/키워드: Ground collapse

검색결과 323건 처리시간 0.023초

Collapse Behavior of an 18-Story Steel Moment Frame during a Shaking Table Test

  • Suita, Keiichiro;Suzuki, Yoshitaka;Takahashi, Motomi
    • 국제초고층학회논문집
    • /
    • 제4권3호
    • /
    • pp.171-180
    • /
    • 2015
  • A shaking table test was conducted at the E-Defense shaking table facility to investigate the damage and collapse behavior of a steel high-rise building under exceedingly large ground motions. The specimen is a one-third scale 18-story steel moment frame designed and constructed according to design specifications and practices used in the 1980s and 1990s. The shaking table tests used a long-duration, long-period ground motion simulated for a sequential Tokai, Nankai, and Nankai earthquake scenario. The building specimen was subjected to a series of progressively increasing scaled motions until it completely collapsed. The damage to the steel frame began through the yielding of beams along lower stories and column bases of the first story. After several excitations by increasing scaled motions, cracks initiated at the welded moment connections and fractures in the beam flanges spread to the lower stories. As the shear strength of each story decreased, the drifts of lower stories increased and the frame finally collapsed and settled on the supporting frame. From the test, a typical progression of collapse for a tall steel moment frame was obtained, and the hysteretic behavior of steel structural members including deterioration due to local buckling and fracture were observed. The results provide important information for further understanding and an accurate numerical simulation of collapse behavior.

Numerical study of electromagnetic wave propagation characteristics in collapsed building for rescue radar applications

  • Kwon, Kyeol;Kim, Dong-Kyoo;Choi, Youngwoo;Cho, Jeahoon;Jung, Kyung-Young
    • ETRI Journal
    • /
    • 제40권4호
    • /
    • pp.546-553
    • /
    • 2018
  • Since the Gyeongju earthquakes in 2016, there have been increased research interests in the areas of seismic design, building collapse, and rescue radar applications in Korea. Ground penetrating radar (GPR) is a nondestructive electromagnetic method that is used for underground surveys. To properly design ground penetrating radar that detects buried victims precisely, it is important to study electromagnetic wave propagation channel characteristics in advance. This work presents an electromagnetic propagation environment analysis of a trapped victim for GPR applications. In this study, we develop a realistic collapse model composed of layered reinforced concrete and a victim positioned horizontally. In addition, the effects of rebars and the distance between the radar antenna and target are investigated. The numerical analysis presents the electromagnetic wave propagation characteristics, including amplitude loss and phase difference, in the 450-MHz and 1,500-MHz frequency band, and it shows the electric field distribution in the environment.

Seismic fragility analysis of RC frame-core wall buildings under the combined vertical and horizontal ground motions

  • Taslimi, Arsam;Tehranizadeh, Mohsen;Shamlu, Mohammadreza
    • Earthquakes and Structures
    • /
    • 제20권2호
    • /
    • pp.175-185
    • /
    • 2021
  • This study strives to highlight the importance of considering the vertical ground motions (VGM) in the seismic evaluation of RC buildings. To this aim, IDA (Incremental Dynamic Analysis) is conducted on three code-based designed high-rise RC frame-core wall buildings using a suite of earthquake records comprising of significant VGMs. To unravel the significance of the VGM inclusion on the performance of the buildings, IDAs are conducted in two states (with and without the vertical component), and subsequently based on each analysis, fragility curves are developed. Non-simulated collapse criteria are used to determine the collapse state drift ratio and the area under the velocity spectrum (SIm) is taken into account as the intensity measure. The outcome of this study delineates that the inclusion of VGM leads to the increase in the collapse vulnerability of the structures as well as to the change in the pattern of inter-story drifts and failure mode of the buildings. The results suggested that it would be more conservative if the VGM is included in the seismic assessment and the fragility analysis of RC buildings.

TBM 터널 굴진시 Jamming이 발생되는 지반의 공학적 특성에 대한 연구 (A Study on Engineering Characteristics of Weak Rock Ground happened TBM Jaming accident in Tunnelling)

  • 유길환
    • 건설안전기술
    • /
    • 통권45호
    • /
    • pp.60-70
    • /
    • 2008
  • 20여 년 전부터 TBM 등에 의한 기계화 터널공법이 국내에서도 보편적으로 적용되고 있음에도 그들의 적용에 따른 시공상 문제점들이 거의 보고되고 있지 않다. 이는 NATM 터널에서와는 달리, 해외에서도 불량한 지반조건에서 기계화 터널시공 중에 발생하였던 사고사례에 대한 연구는 희귀한 편이다. 본 연구에서는 먼저 화산쇄설암류의 지층 경계부에서 심하게 변질된 연약 암반대에서 발생된 터널붕락 사례를 소개하며, 그 붕괴원인을 분석하기 위한 일환으로 실시된 체계적인 지반조사를 통하여 연약 암반의 특성을 규명하였다. 또한 그 연약암반대에 대한 실험결과와 일반 암반에서의 측정범위를 비교하여, 터널붕괴 위험성을 판단할 수 있는 지표를 설정하였다.

  • PDF

굴착시공 중 취약지반구간에서 터널변위 거동 연구 (A Study on Displacement of Tunnel in the Brittel Fracture Zone under Excavation Construction)

  • 문창열
    • 한국지반환경공학회 논문집
    • /
    • 제15권2호
    • /
    • pp.45-52
    • /
    • 2014
  • 차량의 양호한 주행성능 확보를 위한 터널공사의 증가와 더불어 터널시공 중 터널 붕락 및 과다변위 발생사례가 증가하고 있다. 터널공사의 특징이 지반의 강도특성을 최대한 이용하는 경험적인 시공방법이라는 측면에서 터널붕락 및 과다변위 발생사례에 대한 붕락 및 과다변위 발생 원인분석이 중요하다. 따라서 본 논문에서는 취약지반조건에서 대표적인 붕락 및 과다변위 발생사례의 붕락 원인에 대하여 분석하였다. 분석결과, 국지성 강우량의 증가, 시공 중 계측값의 지속적인 증가, 단층파쇄대가 지표면까지 연결되는 지반조건이 공통적으로 존재하는 경우 대규모 붕락 또는 과다변위가 발생한 것으로 분석되었다.

국도 3호선 터널건설 공사 중 붕락구간에 대한 지반보강 (The Ground Reinforcement on Daylight Collapsed Block in Driving Work at the National Road No. 3 Line)

  • 천병식;정덕교;이태우;정진교
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 1999년도 연약지반처리위원회 학술세미나
    • /
    • pp.14-22
    • /
    • 1999
  • Daylight collapse have been occurred by about 6.$^{0}$ m deep at ground surface which connected to the ground surface and excessive overbreak have been occurred by the space and height of 3.$^1$~6.$^2$m at crown head part of the tunnel during tunnelling of lower-half part after completing upper-half part on tunnelling of a phyllite mountain by NATM method at the construction work of two way-double track national road. This study is a successful illustration case of earth improvement by confirming structural safety of the tunnel in a whole through solving the cause of the tunnel collapse and the work have completed successfully through applying such earth strengthening method as cement mortarㆍcement milk injection, S.G.R, steel pipe reinforced multi-step grouting etc.

  • PDF

Collapse fragility analysis of the soil nail walls with shotcrete concrete layers

  • Bayat, Mahmoud;Emadi, Amin;Kosariyeh, Amir Homayoun;Kia, Mehdi;Bayat, Mahdi
    • Computers and Concrete
    • /
    • 제29권 5호
    • /
    • pp.279-283
    • /
    • 2022
  • The seismic analytic collapse fragility of soil nail wall structures with a shotcrete concrete covering is investigated in this paper. The finite element modeling process has been well described. The fragility function evaluates the link between ground motion intensities and the likelihood of reaching a specific level of damage. The soil nail wall has been subjected to incremental dynamic analysis (IDA) from medium to strong ground vibrations. The nonlinear dynamic analysis of the soil nail wall uses a set of 20 earthquake ground motions with varying PGAs. PGD is utilized as an intensity measure, the numerical findings demonstrate that the soil nailing wall reaction is particularly sensitive to earthquake intensity measure (IM).

경남 거제 지역 붕적토 사면의 붕괴 및 보강 사례 연구 (A Case Study on collapse and Reinforcement of Colluvial Deposit slopes in Kyeong-Nam Geo-Je area)

  • 정창덕;장정욱;박춘식
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2005년도 춘계 학술발표회 논문집
    • /
    • pp.870-877
    • /
    • 2005
  • This study examined a case of collapse and reinforcement of the colluvial deposit slope in Kyeongnam Geoje Area. The reason for the collapse was found first in the reduction of the resistant force due to slope-cut for constructing retaining walls. This decreased the resistant force against sliding, which enabled precipitation during the rainy period to seep into the ground in the upper colluvium, resulting in increase in porewater pressure. This leads to decreased shear strength and increased sliding force, which ultimately caused the collapse of the slope. For the long-term stability, methods attained for stability reinforcement are summarized in the following table.

  • PDF

A controlled destruction and progressive collapse of 2D reinforced concrete frames

  • El houcine, Mourid;Said, Mamouri;Adnan, Ibrahimbegovic
    • Coupled systems mechanics
    • /
    • 제7권2호
    • /
    • pp.111-139
    • /
    • 2018
  • A successful methodology for modelling controlled destruction and progressive collapse of 2D reinforced concrete frames is presented in this paper. The strategy is subdivided into several aspects including the failure mechanism creation, and dynamic motion in failure represented with multibody system (MBS) simulation that are used to jointly capture controlled demolition. First phase employs linear elasto-plastic analysis with isotropic hardening along with softening plastic hinge concept to investigate the complete failure of structure, leading to creation of final failure mechanism that behaves like MBS. Second phase deals with simulation and control of the progressive collapse of the structure up to total demolition, using the nonlinear dynamic analysis, with conserving/decaying energy scheme which is performed on MBS. The contact between structure and ground is also considered in simulation of collapse process. The efficiency of the proposed methodology is proved with several numerical examples including six story reinforced concrete frame structures.

Influence of strong ground motion duration on reinforced concrete walls

  • Flores, Camilo;Bazaez, Ramiro;Lopez, Alvaro
    • Earthquakes and Structures
    • /
    • 제21권5호
    • /
    • pp.477-487
    • /
    • 2021
  • This study focuses on the influence of strong ground motion duration on the response and collapse probability of reinforced concrete walls with a predominant response in flexure. Walls with different height and mass were used to account for a broad spectrum of configurations and fundamental periods. The walls were designed following the specifications of the Chilean design code. Non-linear models of the reinforced concrete walls using a distributed plasticity approach were performed in OpenSees and calibrated with experimental data. Special attention was put on modeling strength and stiffness degradation. The effect of duration was isolated using spectrally equivalent ground motions of long and short duration. In order to assess the behavior of the RC shear walls, incremental dynamic analyses (IDA) were performed, and fragility curves were obtained using cumulative and non-cumulative engineering demand parameters. The spectral acceleration at the fundamental period of the wall was used as the intensity measure (IM) for the IDAs. The results show that the long duration ground motion set decreases the average collapse capacity in walls of medium and long periods compared to the results using the short duration set. Also, it was found that a lower median intensity is required to achieve moderate damage states in the same medium and long period wall models. Finally, strength and stiffness degradation are important modelling parameters and if they are not included, the damage in reinforced concrete walls may be greatly underestimated.