• 제목/요약/키워드: Ground characteristics

검색결과 4,616건 처리시간 0.031초

확공을 이용한 지압형 앵커의 인발거동 특성 연구 (The Study of Pullout-Behavior Characteristics of The Ground Anchor Using Expanded Hole)

  • 민경남;정찬묵;정대호
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2011년도 춘계학술대회 논문집
    • /
    • pp.1502-1508
    • /
    • 2011
  • Ground anchor expands the hollow wall of settled part and has the structure which resists the designed tensile load by the bearing pressure generated by the wedge of the anchor body pressing in the expanded part. Such ground anchor has been recognized for stability and economicality since 1960s in technologically advanced nations such as Japan and Europe, and in 1970s, the Japan Society of Soil Engineering has established and announced the anchor concept map. The ground anchor introduced in Korea, however, has the structural problem where the tensile strength is comes only from the ground frictional force due to expansion of the wedge body. In an interval where the ground strength is locally reduced due to fault, discontinuation or such, this is pointed out as a critical weakness where the anchor body of around 1.0m must resist the tensile load. Also, in the installation of concrete block, the concentrated stress of concrete block constructed on the uneven rock surface causes damage, and many such issues in the anchor head have been reported. Thus, in this study, by using the expanded bit for precise expansion of settled part, the ground anchor system was completed so that the bearing pressure of ground anchor can be expressed as much as possible, and the bearing plate was inserted into the ground to resolve the existing issues of concrete block. Through numerical analysis and pullout test executed for verification of site applicability, the pullout-behavior characteristics of anchor was analyzed.

  • PDF

근거리지진의 특성과 동적응답스펙트럼에 관한 연구 (A Study on Characteristics and Dynamic Response Spectrum of Near Fault Ground Motions)

  • 방명석;한성호
    • 한국안전학회지
    • /
    • 제20권3호
    • /
    • pp.143-151
    • /
    • 2005
  • In this study, it is demonstrated that how the effect of the Near Fault Ground Motion affects the response of the structure. Considering the general characteristic of Near Fault Ground Motion the characteristics of Near Fault Ground Motions is analysed by elastic response spectrums, and the inelastic response spectrum is evaluated with the ductility and the yield strength to consider the inelastic behavior which couldn't be simulated through the elastic response spectrum. The result of this study shows that the effect of Near Fault Ground Motion should be considered in the long period range of long span structures but the domestic seismic design code was developed based on Far Fault Ground Motions, so the effects of Near Fault Ground Motions, which is very serious especially in large structures with a long period, are not considered. Therefore, the effect of the Near Fault Ground Motion has to be examined especially in the seismic performance evaluation of long period structure.

Seismic performance of the immersed tunnel under offshore and onshore ground motions

  • Bowei Wang;Guquan Song;Rui Zhang;Baokui Chen
    • Earthquakes and Structures
    • /
    • 제27권1호
    • /
    • pp.41-55
    • /
    • 2024
  • There are obvious differences between the characteristics of offshore ground motion and onshore ground motion in current studies, and factors such as water layer and site conditions have great influence on the characteristics of offshore ground motion. In addition, unlike seismic response analysis of offshore superstructures such as sea-crossing bridges, tunnels are affected by offshore soil constraints, so it is necessary to consider the dynamic interaction between structure and offshore soil layer. Therefore, a seismic response analysis model considering the seawater, soil layer and tunnel structure coupling is established. Firstly, the measured offshore and different soil layers onshore ground records are input respectively, and the difference of seismic response under different types of ground motions is analyzed. Then, the models of different site conditions were input into the measured onshore bedrock strong ground motion records to study the influence of seawater layer and silt soft soil layer on the seabed and tunnel structure. The results show that the overall seismic response between the seabed and the tunnel structure is more significant when the offshore ground motion is input. The seawater layer can suppression the vertical seismic response of seabed and tunnel structure, while the slit soft soil layer can amplify the horizontal seismic response. The results will help to promote seismic wave selection of marine structures and provide reference for improving the accuracy of seismic design of immersed tunnels.

하수관로 특성에 따른 지반함몰 발생 예측을 위한 기계학습 모델 비교 (Comparison of Machine Learning Models to Predict the Occurrence of Ground Subsidence According to the Characteristics of Sewer)

  • 이성열;김진영;강재모;백원진
    • 한국지반환경공학회 논문집
    • /
    • 제23권4호
    • /
    • pp.5-10
    • /
    • 2022
  • 최근 도심지에서는 지반침하가 지속적으로 발생하여 시민의 안전을 위협하고 있다. 상하수도관, 통신관 등 각종 지하시설물이 도로 밑에 매설되어 있다. 지반침하의 원인으로는 도심지에 매설되어 있는 각종 시설물의 노후화와 급격한 도시화로 인한 지하 난개발로 인한 것으로 보고되고 있다. 특히 지반침하의 가장 큰 원인은 하수관로의 노후화로 알려져 있다. 이와 관련된 기존 연구로는 하수관로의 대표적인 몇 가지 요인을 선정하여 통계분석을 통해 지반침하 위험을 예측하는 연구가 진행되었다. 본 연구에서는 OO시의 하수관 특성과 지반침하 데이터를 이용하여 데이터셋을 구축하고, OO시의 하수관 특성과 지반함몰 발생 위치 데이터로 구축된 데이터셋으로 기계학습을 통한 하수관 특성에 따른 지반함몰 발생 분류 모델들을 비교하여 적절한 모델을 선정하고자 하였으며, 선정된 모델에서 도출된 지반함몰에 영향을 미치는 하수관 특성별 중요도를 산정하고자 하였다.

유한차분법을 이용한 말뚝의 하중전이특성 및 해석기법 (Analytical Technique and Load Transfer Features on Pile Using Finite Difference Method)

  • 한중근;이재호
    • 한국환경복원기술학회지
    • /
    • 제9권5호
    • /
    • pp.10-21
    • /
    • 2006
  • For analyze of the bearing capacity, skin friction and settlements of pile on axial compressive loading, both Load transfer tests of pile and pile loading test in field have application to commonly before pile installing. A bearing capacity of pile was affected by the characteristics of surrounding ground of pile. Especially, that is very different because of evaluation of settlement due to each soil conditions of ground depths. The ground characteristics using evaluation of bearing capacity of pile through load transfer analysis depends on N values of SPT, and then a bearing capacity of pile installed soft ground and refilled area may be difficult to rational evaluation. An evaluation of bearing capacity on pile applied axial compressive loading was effected by strength of ground installed pile, unconfined compressive strength at pile tip, pile diameter, rough of excavated surface, confining pressure and deformation modules of rock etc and these are commonly including the unreliability due to slime occurred excavation works. Load transfer characteristics considered ground conditions take charge of load transfer of large diameter pile was investigated through case study applied load transfer tests. To these, matrix analytical technique of load transfer using finite differential equation developed and compared with the results of pile load test.

지반 탁월주기와 지반 운동특성에 관한 연구 (A Study on Predominant Periods and Attenuation Characteristics of Ground Motion)

  • 김소구;차정식;정형식
    • 한국지반공학회지:지반
    • /
    • 제11권2호
    • /
    • pp.139-156
    • /
    • 1995
  • 지반진동특성의 지진공학적인 정밀측정의 일환으로 지반진동의 탁월주기와 지반진동의 거리에 따른 감쇠특성을 현장실험을 통하여 조사하였다. 이 조사는 세가지 부분의 실험을 통하여 결과를 얻었다. 첫째, 지반의 탁월주기는 고감도 디지탈 속도지진계-3축성분 속도계를 이용하는 Seismometer와 디지탈 Seismograph를 이용하여 지반과 건물에서 일정한 주기를 가진 연속적인 미소진동으로 부터 지반 및 건물진동의 탁월주기를 계측하였다. 지반에서의 탁월주기는 0.18~0.23 sec, 건물2층의 탁월주기는 0.26~0.31 sec였다. 둘째, 지반 구조조사는 디지탈 탄성파탐사기를 이용하여 굴절법을 이용한 탄성파탐사를 실시하였다. 실험장소인 한양대학교 안산캠퍼스의 지층구조는 상부층(표토층: surface layer)은 저속도층으로서 662m1s, 하부층(지반층: base ground)은 2210m/s의 P파 속도를 갖고, 주시곡선도로부터 표토층의 두께는 약 7m로 검측되었다. 이것은 7m두깨의 표토층(top soil)과 그 하부에 사질 점토성의 지반층(base ground)이 존재함을 암시한다. 셋째, Seisgun을 이용하여 인공적인 탄성파 에너지원을 만들어 지반의 진동 감쇠특성을 조사 하였다. 거리 감쇠상수(spatial attenuation conf$\ulcorner$icient) Y는 거리에 따른 진폭 을 계산하여 Z-성분(vertical)은 0.0137, X-성분(longitudinal)은 0.0025, Y-성분(transverse)은 0.0290이고 Spatial QP의 값은 각각 5.913~7.575, 32.371 ~41.452, 2.794~3.579의 값이 산출되었었다. 이 결과 다른 두성분에 비해서 종방향(z-성분, longitudinal)성분은 감쇠경향이 낮음을 알 수 있다. 그러므로 이 경우에 구조물 설계시 종방향(x-성분, longitudinal)성분에 대 한 내진설계가 고려 되어야 할 것이다.

  • PDF

실내모형실험에 의한 Plastic Board Drain이 적용된 연약지반의 압밀거동에 관한 연구 (Study on Consolidation Behaviors of Soft Ground by Plastic Board Drain Using Model Tests)

  • 유승경;홍원표;윤길림
    • 한국지반환경공학회 논문집
    • /
    • 제4권4호
    • /
    • pp.17-23
    • /
    • 2003
  • 플라스틱보드드레인(PBD)공법에 의해 개량된 연약점토지반의 압밀특성은 아직 충분히 밝혀져 있지 않기 때문에 개량지반의 압밀거동을 정확히 예측하기는 어려운 실정이다. PBD공법에 사용되는 배수재의 형상은 개량지반의 압밀특성에 영향을 미치는 중요한 인자중의 하나로 알려져 있다. 본 연구에서는PBD공법에 의해 개량된 연약지반의 압밀특성에 미치는 배수재의 폭과 재하중 상태의 영향을 고찰하기 위하여 일련의 실내모형실험을 실시하였다. 모형실험의 결과로부터 모형지반의 침하 및 과잉간극수압의 소산거동과, 모형지반내의 함수비 분포형상을 파악할 수 있었다. 그리고 모형실험결과에 미친 모형지반 상부의 배수조건의 영향을 검토하기 위해서 Barron의 이론해에 의한 압밀거동과 비교, 고찰하였다. 그 결과 모형실험에 의한 압밀거동은 방사방향의 배수조건 뿐만 아니라 연직방향 배수조건으로부터도 영향을 받았음을 알 수 있었다.

  • PDF

Near-ground wind and its characterization for engineering applications

  • Crandell, Jay H.;Farkas, William;Lyons, James M.;Freeborne, William
    • Wind and Structures
    • /
    • 제3권3호
    • /
    • pp.143-158
    • /
    • 2000
  • This report presents the findings of a one-year monitoring effort to empirically characterize and evaluate the nature of near-ground winds for structural engineering purposes. The current wind engineering practice in the United States does not explicitly consider certain important near-ground wind characteristics in typical rough terrain conditions and the possible effect on efficient design of low-rise structures, such as homes and other light-frame buildings that comprise most of the building population. Therefore, near ground wind data was collected for the purpose of comparing actual near-ground wind characteristics to the current U.S. wind engineering practice. The study provides data depicting variability of wind speeds, wind velocity profiles for a major thunderstorm event and a northeaster, and the influence of thunderstorms on annual extreme wind speeds at various heights above ground in a typical rough environment. Data showing the decrease in the power law exponent with increasing wind speed is also presented. It is demonstrated that near-ground wind speeds (i.e., less than 10 m above ground) are likely to be over-estimated in the current design practice by as much as 20 percent which may result in wind load over-estimate of about 50% for low-rise buildings in typical rough terrain. The importance of thunderstorm wind profiles on determination of design wind speeds and building loads (particularly for buildings substantially taller than 10 m) is also discussed. Recommendations are given for possible improvements to the current design practice in the United States with respect to low-rise buildings in rough terrain and for the need to study the impact of thunderstorm gust profile shapes on extreme value wind speed estimates and building loads.

Shaking table test on seismic response and failure characteristics of ground fissures site during earthquakes

  • Chao, Zhang;Xuzhi, Nie;Zhongming, Xiong;Yuekui, Pang;Xiaolu, Yuan;Yan, Zhuge;Youjun, Xu
    • Geomechanics and Engineering
    • /
    • 제32권3호
    • /
    • pp.307-319
    • /
    • 2023
  • Ground fissures have a huge effect on the integrity of surface structures. In high-intensity ground fissure regions, however, land resource would be wasted and city building and economic development would be limited if the area avoiding principle was used. In view of this challenge, to reveal the seismic response and seismic failure characteristics of ground fissure sites, a shaking table test on model soil based on a 1:15 scale experiment was carried out. In the test, the spatial distribution characteristics of acceleration response and Arias intensity were obtained for a site exposed to earthquakes with different characteristics. Furthermore, the failure characteristics and damage evolution of the model soil were analyzed. The test results indicated that, with the increase in the earthquake acceleration magnitude, the crack width of the ground fissure enlarged from 0 to 5 mm. The soil of the hanging wall was characterized by earlier cracking and a higher abundance of secondary fissures at 45°. Under strong earthquakes, the model soil, especially the soil near the ground fissure, was severely damaged and exhibited reduced stiffness. As a result, its natural frequency also decreased from 11.41 Hz to 8.05 Hz, whereas the damping ratio increased from 4.8% to 9.1%. Due to the existence of ground fissure, the acceleration was amplified to nearly 0.476 m/s2, as high as 2.38 times of the input acceleration magnitude. The maximum of acceleration and Arias intensity appeared at the fissure zone, which decreased from the main fissure toward both sides, showing hanging wall effects. The seismic intensity, duration and frequency spectrum all had certain effects on the seismic response of the ground fissure site, but their influence degrees were different. The seismic response of the site induced by the seismic wave that had richer low-frequency components and longer duration was larger. The discrepancies of seismic response between the hanging wall and the footwall declined obviously when the magnitude of the earthquake acceleration increased. The research results will be propitious to enhancing the utilizing ratio of the limited landing resource, alleviation of property damages and casualties, and provide a good engineering application foreground.

한국형 기동헬기 전기체 지상진동시험 (Ground Vibration Test for Korean Utility Helicopter)

  • 김세희;곽동일;정세운;최종호;김정훈
    • 한국항공우주학회지
    • /
    • 제41권6호
    • /
    • pp.495-501
    • /
    • 2013
  • 한국형 기동헬기는 블레이드 가진주파수를 회피하고 지상 운용에서 로터와 기체의 동적 특성이 연계되어 나타나는 불안정성이 없도록 설계되었다. 이러한 설계 목적을 위해 진동 해석과 지상공진 해석을 수행하여 기체와 주로터의 동적 특성을 분석하였다. 이후 훨타워 시험을 통해 주로터의 동적특성을 확인하였으며 지상진동시험을 통해 기체의 동적 특성을 확인하였다. 지상진동시험은 지상 및 비행 운용 조건이 고려된 시험체 구성과 시험 조건을 적용하여 수행되었다. 본 논문에서는 한국형 기동헬기에 적용된 지상진동시험 방법 및 분석 기법을 보이고 해석 모델 보정기법과 보정된 해석 결과를 제시한다.