• Title/Summary/Keyword: Ground Turbulence

Search Result 86, Processing Time 0.023 seconds

The Effects of Mean-Line Shape on Longitudinal Stablility of a Wing in Ground Effect

  • Kim, Wu-Joan;Shin, Myung-Soo
    • Journal of Hydrospace Technology
    • /
    • v.2 no.2
    • /
    • pp.14-23
    • /
    • 1996
  • The Reynolds-averaged Navier-Stokes equations for turbulent flow around a two-dimensional foil section moving ova. a flat surface (roller plate) is solved. The numerical method utilized the finite-difference schemes in collocated grids and the Baldwin-Lomax model is employed for turbulence closure. Calculations are carried out for three foil sections of different mean-line shape with various height ratio. As a foil approaches the bottom surface, the lift is augmented, while there exist some differences in pitching moment due to mean-line shape. It was found that the S-shaped mean line deteriorates lift characteristics but increases pitching moment to restore the designed height.

  • PDF

Development of adaptive optics system for SNUO 1m telescope

  • Ryu, Hyungjoon;Park, Yong-Sun;Seo, Jin-guk
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.45 no.1
    • /
    • pp.67.1-67.1
    • /
    • 2020
  • Adaptive Optics (AO) is the technology for ground-based telescopes to overcome the interference caused by atmospheric turbulence. We are developing an AO system for the 1-m telescope at Seoul National University Observatory (SNUO). The seeing size of the SNUO is 2 arcseconds on average, and 0.85 arcseconds at best condition. Our system is based on MEMS deformable mirror and Shack-Hartmann wavefront sensor. We developed the wavefront sensor using a cheap CMOS camera, and measured phase disturbance at SNUO. To verify the performance of the AO system, we designed an artificial phase disturber that produces similar scale phase error, measured at SNUO. We carried out laboratory tests in which the AO system measures and corrects the wavefront using the phase disturber and an F/6 light source, the same as that of SNUO telescope. The control system was developed in C++. The system performs closed-loop PI correction up to 100 Hz at a consumer-grade PC.

  • PDF

Development of internal inflow/outflow steady mean flow boundary condition using Perfectly Matched Layer for the prediction of turbulence-cascade interaction noise (난류-캐스케이드 상호작용 소음 예측을 위한 Perfectly Matched Layer 을 이용한 내부 입/출구 정상유동 경계조건의 개발)

  • Kim, Dae-Hwan;Cheong, Cheol-Ung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.04a
    • /
    • pp.521-526
    • /
    • 2012
  • It is essential for the accurate time-domain prediction of broadband noise due to turbulence-cascade interaction to develop inflow/outflow boundary conditions to satisfy the following three requirements: to maintain the back ground mean flow, to nonreflect the outgoing disturbances and to generate the specified input gust. The preceding study(1) showed that Perfectly Matched Layer (PML) boundary condition was successfully applied to absorb the outgoing disturbances and to generate the specified gust in the time-domain computations of broadband noise due to interaction of incident gust with a cascade of flat-plates. In present study, PML boundary condition is extended in order to predict steady mean flow that is needed for the computation of noise due to interaction of incident gust with a cascade of airfoils. PML boundary condition is originally designed to absorb flow disturbances superimposed on the steady meanflow in the buffer zone. However, the steady meanflow must be computed before PML boundary condition is applied on the flow computation. In the present paper, PML equations are extended by introducing source term to maintain desired mean flow conditions. The extended boundary condition is applied to the benchmark problem where the meanflow around a cascade of airfoils is predicted. These illustrative computations reveal that the extended PML equations can effectively provide and maintain the target meanflow.

  • PDF

Development of Internal Inflow/outflow Steady Mean Flow Boundary Condition Using Perfectly Matched Layer for the Prediction of Turbulence-cascade Interaction Noise (난류-캐스케이드 상호작용 소음 예측을 위한 Perfectly Matched Layer을 이용한 내부 입/출구 정상유동 경계조건의 개발)

  • Kim, Dae-Hwan;Cheong, Cheol-Ung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.7
    • /
    • pp.685-691
    • /
    • 2012
  • It is essential for the accurate time-domain prediction of broadband noise due to turbulence-cascade interaction to develop inflow/outflow boundary conditions to satisfy the following three requirements: to maintain the back ground mean flow, to nonreflect the outgoing disturbances and to generate the specified input gust. The preceding study showed that perfectly matched layer(PML) boundary condition was successfully applied to absorb the outgoing disturbances and to generate the specified gust in the time-domain computations of broadband noise due to interaction of incident gust with a cascade of flat-plates. In present study, PML boundary condition is extended in order to predict steady mean flow that is needed for the computation of noise due to interaction of incident gust with a cascade of airfoils. PML boundary condition is originally designed to absorb flow disturbances superimposed on the steady meanflow in the buffer zone. However, the steady meanflow must be computed before PML boundary condition is applied on the flow computation. In the present paper, PML equations are extended by introducing source term to maintain desired mean flow conditions. The extended boundary condition is applied to the benchmark problem where the meanflow around a cascade of airfoils is predicted. These illustrative computations reveal that the extended PML equations can effectively provide and maintain the target meanflow.

Wind-excited stochastic vibration of long-span bridge considering wind field parameters during typhoon landfall

  • Ge, Yaojun;Zhao, Lin
    • Wind and Structures
    • /
    • v.19 no.4
    • /
    • pp.421-441
    • /
    • 2014
  • With the assistance of typhoon field data at aerial elevation level observed by meteorological satellites and wind velocity and direction records nearby the ground gathered in Guangzhou Weather Station between 1985 and 2001, some key wind field parameters under typhoon climate in Guangzhou region were calibrated based on Monte-Carlo stochastic algorithm and Meng's typhoon numerical model. By using Peak Over Threshold method (POT) and Generalized Pareto Distribution (GPD), Wind field characteristics during typhoons for various return periods in several typical engineering fields were predicted, showing that some distribution rules in relation to gradient height of atmosphere boundary layer, power-law component of wind profile, gust factor and extreme wind velocity at 1-3s time interval are obviously different from corresponding items in Chinese wind load Codes. In order to evaluate the influence of typhoon field parameters on long-span flexible bridges, 1:100 reduced-scale wind field of type B terrain was reillustrated under typhoon and normal conditions utilizing passive turbulence generators in TJ-3 wind tunnel, and wind-induced performance tests of aero-elastic model of long-span Guangzhou Xinguang arch bridge were carried out as well. Furthermore, aerodynamic admittance function about lattice cross section in mid-span arch lib under the condition of higher turbulence intensity of typhoon field was identified via using high-frequency force-measured balance. Based on identified aerodynamic admittance expressions, Wind-induced stochastic vibration of Xinguang arch bridge under typhoon and normal climates was calculated and compared, considering structural geometrical non-linearity, stochastic wind attack angle effects, etc. Thus, the aerodynamic response characteristics under typhoon and normal conditions can be illustrated and checked, which are of satisfactory response results for different oncoming wind velocities with resemblance to those wind tunnel testing data under the two types of climate modes.

A study of the performance improvement of atmospheric optical communication for realization of optical satellite communication and optical radio LAN (광위성 통신 및 광무선 LAN의 구현을 위한 대기 광통신 성능향상에 관한 연구)

  • Kim, Yung-Kwon;Jung, Jin-Ho;Kim, Jae-Pyung;Kim, In-Ho;Hong, Kwon-Eui;Han, Jong-Seok
    • Journal of IKEEE
    • /
    • v.1 no.1 s.1
    • /
    • pp.138-155
    • /
    • 1997
  • Wireless optical communication is able to obtain high antenna gain as well as utilize to transmit the high-speed information with large capacity than the RF communication. However, the propagation path (atmosphere) is considered as an attenuator occured turbulence, absorption and scattering. These undesired phenomena diminish the amount of light that is collected at the receiver. To evaluate the effect of the atmospheric turbulance and scattering, this paper perform the ground-to-ground wireless optical LAN experiment by using the (2,1,6) convolutional coder and Viterbi decoder, and analyze numerically the earth-station antenna diameter due to the propagation path condition and upstream/downstream link.

  • PDF

Analysis on Vertical Structure of Sea Fog in the West Coast of the Korean Peninsula by Using Drone (드론을 활용한 한반도 서해 연안의 해무 연직구조 분석)

  • Jeon, Hye-Rim;Park, Mi Eun;Lee, Seung Hyeop;Park, Mir;Lee, Yong Hee
    • Atmosphere
    • /
    • v.32 no.4
    • /
    • pp.307-322
    • /
    • 2022
  • A drone has recently got attention as an instrument for weather observation in lower atmosphere because it can produce the high spatiotemporal resolution weather data even though the weather phenomenon is inaccessible. Sea fog is a weather phenomenon occurred in lower atmosphere, and has observational limitations because it occurs on the sea. Therefore, goal of this study is to analyze the vertical structures about inflow, development and dispersion of sea fog using the high-resolution weather data with the meteorological sensor-equipped drone. This study observed sea fogs in the west coast of the Korean peninsula from March to October 2021 and investigated one sea fog inflowed into the coast on June 8th 2021. θe - qv diagrams (θe: equivalent potential temperature, qv: water vapor ratio) and vertical wind structures were analyzed. At inflow of sea fog, moist adiabatically stable layer was formed in 0-300 m and prevailing wind was switched from south-southwesterly to west-southwesterly under 120 m. Both changes are favorable for sea fog on the location. θe and qv plummeted in a layer 0-183 m. The inflowed sea fog developed from 183 m to 327 m by mixing with ambient atmosphere on top of sea fog. Also, strong mechanical turbulence near ground drove a vertical mixing under stable layer. At dispersion of sea fog, as θe on ground gradually increased, air condition was changed to neutral. Evaporation occurred on both bottom and top in sea fog. These results induced dissipation of sea fog.

Numerical analysis of Flow Characteristic Around an Automobile with Variation of Slant Angle of Rear End (후미경사각 변화에 따른 자동차주위 유동특성 해석)

  • 정영래;강동민;박원규
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.1
    • /
    • pp.75-83
    • /
    • 2001
  • In this paper, numerical analysis is used to find the effects of inclination of rear end on flow characteristic around an automobile. The reference slant angle of rear end is 28.6$^{\circ}$, the slant angle of rear end is decreased to 24$^{\circ}$, 26.6$^{\circ}$ and also increased to 31.6$^{\circ}$, 36.4$^{\circ}$. The 3-D incompressible Navier-Stockes equations are solved by the iterative time marching scheme. The computed surface pressure coefficients were compared with experimental results and a good agreement has been achieved. The A- and C-pillar vortex and other flow phenomena around the ground vehicle are evidently shown. The variation of aerodynamic coefficients of drag, lift with respect to inclination angle of rear end are systematically studied. The flow characteristic on the automobile surface with respect to change of inclination of rear end have been also studied.

  • PDF

Fabrication of Three-Dimensional Scanning System for Inspection of Massive Sinkhole Disaster Sites (대형 싱크홀 재난 현장 조사용 3차원 형상화 장비 구현)

  • Kim, Soolo;Yoon, Ho-Geun;Kim, Sang-Wook
    • The Journal of Korea Robotics Society
    • /
    • v.15 no.4
    • /
    • pp.341-349
    • /
    • 2020
  • Recently, interest in ground subsidence in urban areas has increased after a large sinkhole occurred near the high-story building area in Jamsil, Seoul, Korea, in 2014. If a massive sinkhole occurs in an urban area, it is crucial to assess its risk rapidly. Access to humans for on-site safety diagnosis may be difficult because of the additional risk of collapse in the disaster area. Generally, inspection using drones equipped with high-speed lidar sensors can be utilized. However, if the sinkhole is created vertically to a depth of 100 m, similar to the sinkhole in Guatemala, the drone cannot be applied because of the wireless communication limit and turbulence inside the sinkhole. In this study, a three-dimensional (3D) scanning system was fabricated and operated using a towed cable in a massive vertical sinkhole to a depth of 200 m. A high-speed lidar sensor was used to obtain a continuous cross-sectional shape at a certain depth. An inertial-measuring unit was applied to compensate for the error owing to the rotation and pendulum movement of the measuring unit. A reconstruction algorithm, including the compensation scheme, was developed. In a vertical hole with a depth of 180 m in the mining area, the fabricated system was applied to scan 0-165 m depth. The reconstructed shape was depicted in a 3D graph.

A 6 m cube in an atmospheric boundary layer flow -Part 1. Full-scale and wind-tunnel results

  • Hoxey, R.P.;Richards, P.J.;Short, J.L.
    • Wind and Structures
    • /
    • v.5 no.2_3_4
    • /
    • pp.165-176
    • /
    • 2002
  • Results of measurements of surface pressure and of velocity field made on a full-scale 6 m cube in natural wind are reported. Comparisons are made with results from boundary-layer wind-tunnel studies reported in the literature. Two flow angles are reported; flow normal to a face of the cube (the $0^{\circ}$ case) and flow at $45^{\circ}$. In most comparisons, the spread of wind-tunnel results of pressure measurements spans the full-scale measurements. The exception to this is for the $0^{\circ}$ case where the roof and side-wall pressures at full-scale are more negative, and as a result of this the leeward wall pressures are also lower. The cause of this difference is postulated to be a Reynolds Number scale effect that affects flow reattachment. Measurements of velocity in the vicinity of the cube have been used to define the mean reattachment point on the roof centre line for the $0^{\circ}$ case, and the ground level reattachment point behind the cube for both $0^{\circ}$ and $45^{\circ}$ flow. Comparisons are reported with another full-scale experiment and also with wind-tunnel experiments that indicate a possible dependency on turbulence levels in the approach flow.