• Title/Summary/Keyword: Ground System Infrastructure

Search Result 146, Processing Time 0.025 seconds

Development Plan of Compact Satellite for Water Resources and Water-related Disaster Management (수자원·수재해 중형위성 개발 방안)

  • HWANG, Eui-Ho;CHAE, Hyo-Sok;YU, Wan-Sik
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.21 no.4
    • /
    • pp.218-237
    • /
    • 2018
  • The purpose of this study is to propose a mid - range low - orbit water disaster monitoring satellite development plan to revolutionize water disaster management infrastructure through securing an independent and leading observation infrastructure and to secure safety against disaster prepared for climate change. Water and water disaster satellites should be able to detect changes in the surface of the ground and observe hydrological factors during daytime, nighttime, and bad weather. In addition, independent technology development should be possible. To do this, we selected C-band image radar payload considering domestic technology and water resources management, and suggested detailed development plan. In this way, it is reflected in the national next-generation mid-satellite 2-phase project plan to secure the basis for building a disaster monitoring system related to wide-area water.

Development of a Slope Condition Analysis System using IoT Sensors and AI Camera (IoT 센서와 AI 카메라를 융합한 급경사지 상태 분석 시스템 개발)

  • Seungjoo Lee;Kiyen Jeong;Taehoon Lee;YoungSeok Kim
    • Journal of the Korean Geosynthetics Society
    • /
    • v.23 no.2
    • /
    • pp.43-52
    • /
    • 2024
  • Recent abnormal climate conditions have increased the risk of slope collapses, which frequently result in significant loss of life and property due to the absence of early prediction and warning dissemination. In this paper, we develop a slope condition analysis system using IoT sensors and AI-based camera to assess the condition of slopes. To develop the system, we conducted hardware and firmware design for measurement sensors considering the ground conditions of slopes, designed AI-based image analysis algorithms, and developed prediction and warning solutions and systems. We aimed to minimize errors in sensor data through the integration of IoT sensor data and AI camera image analysis, ultimately enhancing the reliability of the data. Additionally, we evaluated the accuracy (reliability) by applying it to actual slopes. As a result, sensor measurement errors were maintained within 0.1°, and the data transmission rate exceeded 95%. Moreover, the AI-based image analysis system demonstrated nighttime partial recognition rates of over 99%, indicating excellent performance even in low-light conditions. Through this research, it is anticipated that the analysis of slope conditions and smart maintenance management in various fields of Social Overhead Capital (SOC) facilities can be applied.

Field Measurements for the Lattice Girder and the Shotcrete Lining (격자지보와 숏크리트 계측에 대한 현장실험 연구)

  • Kim, Hak-Joon;Jin, Soo-Hwan;Park, Si-Hyun
    • The Journal of Engineering Geology
    • /
    • v.18 no.1
    • /
    • pp.93-102
    • /
    • 2008
  • The use of lattice girder is increased at the tunnel site in Korea because of the several advantages over the traditional H-steel rib. The lattice girder supports the ground with shotcretes, forming a combined support system. Therefore, stress measurements at the lattice girder are necessary to calculated the ground loads. However, field measurements at the lattice girder are rarely performed at the tunnel site. The proper way of stress measurements for the lattice girder is not fully established in Korea. The correction of stress measurements at the shotcretes is often disregarded even though the measured stresses include non-stress related strains. Results of the stress measurements obtained from the lattice girder and non-stress shotcretes are used to improve the credibility of the stress measurements at the primary lining.

Behavior of double deck tunnel due to feature change and variation of ground water table (다목적 복층터널의 기능전환과 지하수위 변화에 따른 거동분석)

  • Park, No-Hyeon;Kim, Ho-Jong;Shin, Jong-Ho
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.18 no.6
    • /
    • pp.581-591
    • /
    • 2016
  • Several attempts to construct multi-purpose tunnel for both road and waterway have been made. The multi-purpose tunnel is mainly used as a road tunnel, however it is transferred to waterway to control flood during rainy season. The planning of the multi-purpose tunnel is recognized as cost-effective way of infrastructure construction. In case of the multi-purpose tunnel constructed beneath groundwater table, seasonal fluctuation of groundwater table and repeated flow in the tunnel may cause long-term deterioration of the tunnel system. In this study, the behavior of multi-purpose tunnel in view of groundwater table or flow in the tunnel is investigated using model test and numerical modeling method. The results have shown that rising of groundwater table caused buoyant force to the tunnel and the fluctuation of rainwater in the tunnel generated loosening of surrounding ground. It is recommended to evaluate the effect of the long-term water pressure variation in the design of a multi-purpose tunnel.

Factors Influencing Cost Overruns in Construction Projects of International Contractors in Vietnam

  • VU, Thong Quoc;PHAM, Cuong Phu;NGUYEN, Thu Anh;NGUYEN, Phong Thanh;PHAN, Phuong Thanh;NGUYEN, Quyen Le Hoang Thuy To
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.7 no.9
    • /
    • pp.389-400
    • /
    • 2020
  • A construction project is a designed product made up of labors, materials, and installations in the project positioned on the ground and may include the underground and ground section, and the section in water or on the water surface. It is a civil, industrial, transport, agricultural and rural development, infrastructure, or some other. A key phase in the life cycle of these construction projects is the implementation when building products are made directly with workers, equipment, materials, and managers. If there is a lack of management experience, information, and problem-solving solutions to tackle the risks faced by contractors, especially foreign ones, will fail in controlling the project's cost. This study was conducted with investigations, discussions, and evaluation of the factors that lead to cost overruns in the construction projects of international contractors in Vietnam. The principal component analysis (PCA) showed that those factors that influence cost overruns these construction projects fall into five general groups, including factors related to (i) the owners, (ii) the foreign contractors, (iii) the subcontractors and suppliers, (iv) state management, and (v) the project itself. Besides, the study proposes solutions to limit cost overruns in construction projects and improve the profitability of international contractors in Vietnam.

Development and Application of a Physics-based Soil Erosion Model (물리적 표토침식모형의 개발과 적용)

  • Yu, Wansik;Park, Junku;Yang, JaeE;Lim, Kyoung Jae;Kim, Sung Chul;Park, Youn Shik;Hwang, Sangil;Lee, Giha
    • Journal of Soil and Groundwater Environment
    • /
    • v.22 no.6
    • /
    • pp.66-73
    • /
    • 2017
  • Empirical erosion models like Universal Soil Loss Equation (USLE) models have been widely used to make spatially distributed soil erosion vulnerability maps. Even if the models detect vulnerable sites relatively well utilizing big data related to climate, geography, geology, land use, etc within study domains, they do not adequately describe the physical process of soil erosion on the ground surface caused by rainfall or overland flow. In other words, such models are still powerful tools to distinguish the erosion-prone areas at large scale, but physics-based models are necessary to better analyze soil erosion and deposition as well as the eroded particle transport. In this study a physics-based soil erosion modeling system was developed to produce both runoff and sediment yield time series at watershed scale and reflect them in the erosion and deposition maps. The developed modeling system consists of 3 sub-systems: rainfall pre-processor, geography pre-processor, and main modeling processor. For modeling system validation, we applied the system for various erosion cases, in particular, rainfall-runoff-sediment yield simulation and estimation of probable maximum sediment (PMS) correlated with probable maximum rainfall (PMP). The system provided acceptable performances of both applications.

A comprehensive approach to flow-based seismic risk analysis of water transmission network

  • Yoon, Sungsik;Lee, Young-Joo;Jung, Hyung-Jo
    • Structural Engineering and Mechanics
    • /
    • v.73 no.3
    • /
    • pp.339-351
    • /
    • 2020
  • Earthquakes are natural disasters that cause serious social disruptions and economic losses. In particular, they have a significant impact on critical lifeline infrastructure such as urban water transmission networks. Therefore, it is important to predict network performance and provide an alternative that minimizes the damage by considering the factors affecting lifeline structures. This paper proposes a probabilistic reliability approach for post-hazard flow analysis of a water transmission network according to earthquake magnitude, pipeline deterioration, and interdependency between pumping plants and 154 kV substations. The model is composed of the following three phases: (1) generation of input ground motion considering spatial correlation, (2) updating the revised nodal demands, and (3) calculation of available nodal demands. Accordingly, a computer code was developed to perform the hydraulic analysis and numerical modelling of water facilities. For numerical simulation, an actual water transmission network was considered and the epicenter was determined from historical earthquake data. To evaluate the network performance, flow-based performance indicators such as system serviceability, nodal serviceability, and mean normal status rate were introduced. The results from the proposed approach quantitatively show that the water network is significantly affected by not only the magnitude of the earthquake but the interdependency and pipeline deterioration.

Comparison and Analysis of Return Current Measurement Values on High Speed Line (고속선 귀선전류 측정값 비교 및 분석)

  • Kim, Yong-Kyu;Kim, Ju-Yeop;Oh, Seh-Chan;Baek, Jong-Hyun;Yoon, Yong-Ki;Kwak, Woo-Hyun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.5
    • /
    • pp.877-884
    • /
    • 2017
  • A method of common earth, which is proposed by French Railway(SNCF) and is applied to high speed railway, minimizes the effect of the traction return current from tracks so that trackside electric devices can be protected and operation and maintenance staffs are kept out from injury in an electric railway environment. According to it, all the new domestic electric railway lines are replaced from existing individual earth method to the common earth method. In this paper, we analyze the correlation between common earth method and traction return current to prove whether the common earth has surely contributed to minimize the effect of the traction return current. The analysis was done based on the measurement of the traction return current at the domestic high speed railway line.

Development of a nonlinear seismic response capacity spectrum method for intake towers of dams

  • Cocco, Leonardo;Suarez, Luis E.;Matheu, Enrique E.
    • Structural Engineering and Mechanics
    • /
    • v.36 no.3
    • /
    • pp.321-341
    • /
    • 2010
  • The seismic-induced failure of a dam could have catastrophic consequences associated with the sudden release of the impounded reservoir. Depending on the severity of the seismic hazard, the characteristics and size of the dam-reservoir system, preventing such a failure scenario could be a problem of critical importance. In many cases, the release of water is controlled through a reinforced-concrete intake tower. This paper describes the application of a static nonlinear procedure known as the Capacity Spectrum Method (CSM) to evaluate the structural integrity of intake towers subject to seismic ground motion. Three variants of the CSM are considered: a multimodal pushover scheme, which uses the idea proposed by Chopra and Goel (2002); an adaptive pushover variant, in which the change in the stiffness of the structure is considered; and a combination of both approaches. The effects caused by the water surrounding the intake tower, as well as any water contained inside the hollow structure, are accounted for by added hydrodynamic masses. A typical structure is used as a case study, and the accuracy of the CSM analyses is assessed with time history analyses performed using commercial and structural analysis programs developed in Matlab.

The Role of Residents for the Sustainable Ecopolis and Ecovillage (지속가능한 생태도시 및 생태마을에서의 거주자의 역할)

  • 곽인숙
    • Journal of the Korean Home Economics Association
    • /
    • v.39 no.6
    • /
    • pp.109-122
    • /
    • 2001
  • This study was performed to identify the roles of residents for the environmentally sound and sustainable development, taco-polis(kologisches Bauen), eco-village and Symbiotic Housing. These buildings will achieve energy efficiency through design strategies such as passive solar heating system, natural cooling and day lighting. Their infrastructure will feature parking on the periphery, extensive pedestrian paths, outdoor ground lights that preserve stellar visibility, and environmentally sensitive technologies such as low writer use fixtures. And they will restore biodiversity while protecting the wildlife, wetlands, forests, soil, air and water. Their houses wile be designed to support home-based occupations, offering high-speed Internet access and other options to promote a localized, sustainable economy. To support and encourage the evolution of sustainable settlements, it is necessary to prepare constructing the physical facilities and the social functions relating with residents. The roles of residents are important to provide a high Quality lifestyle and to integrate a supportive social environment with a low-impact way of life. This study concluded the four main roles of residents for the sustainable of Eco-polis and Ecovillage. 1. Residents assist transition towards a sustainable society as eco-conscious consumers in the planning stage. 2. Residents live in a ecological way for the sustainable ecovillage. 3. Residents exchange information and education for increasing the community glue as a communication network. 4. Residents support and transmit their cultural vitality and tradition for the next generation. So, users are expected to encourage resident's participation in the planning, design, ongoing management and maintenance of the sustainable ecovillage.

  • PDF