• Title/Summary/Keyword: Ground Simulator

Search Result 219, Processing Time 0.026 seconds

Experimental Analysis of Tilt-stability in Bicycling (자전거 주행시 경사 안정성에 대한 실험적 분석)

  • 송준걸;신재철;이종원
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.604-609
    • /
    • 2002
  • In development of an advanced bicycle simulator, the investigation of the interactions between bicycle and rider during cycling is paramount important because bicycle is a two-wheeled human-powered vehicle. Tn this work, the tilt stability. among various interactions, of bicycling is investigated experimentally, In the experiments, the tilt angles of the bicycle, riders body and head are measured, as the riding p;1th and the speed are varied. Subjects are asked to ride along four typical paths on rigid flat ground : the straight, C-curved, S-curved and circle paths. The results from extensive experiments with different subjects can be summarized as : 1) The tilt angles of bicycle and rider are almost out of phase during pedaling along the straight path. 2) The bicycle tilt angle is nearly proportional to the square of bicycle speed for the straight and curved paths, and to the curvature for the curved paths. The head tilt angle is the biggest and the body tilt angle is the smallest for the straight path, but the tendency is reversed for the C-curved path. During the curve maneuvering, the rider's head tends to tilt by less than 40% of the bicycle tilt angle.

  • PDF

KSLV-I 발사 시뮬레이션시스템 개념설계 및 실시간 데이터 처리 시험평가

  • Seo, Jin-Ho;Hong, Il-Hee;Lee, Young-Ho;Chung, Eui-Seung;Cho, Gwang-Rae
    • Aerospace Engineering and Technology
    • /
    • v.3 no.1
    • /
    • pp.222-231
    • /
    • 2004
  • LCS(Launch Control System) in Space Center performs the ground and flight tests of launch vehicle. Those tests require data monitoring and control functions to the external systems such as launch vehicle, launch pad, and propellant supply system, etc. The LCS is composed of real time control system, simulation system, data server, external network, etc. The purpose of the simulation system is to simulate launch vehicle, and it is used for evaluation test of the LCS. This paper described the simulation system overview, the concept design, and the real time data processing evaluation tests of the simulator, gateway, data distribution server which are constituents of the simulation system.

  • PDF

Investigation on the performance of the six DOF C.G.S., Algeria, shaking table

  • Aknouche, Hassan;Bechtoula, Hakim;Airouche, Abdelhalim;Benouar, Djillali
    • Earthquakes and Structures
    • /
    • v.6 no.5
    • /
    • pp.539-560
    • /
    • 2014
  • Shaking tables are devices for testing structures or structural components models with a wide range of synthetic ground motions or real recorded earthquakes. They are essential tools in earthquake engineering research since they simulate the effects of the true inertial forces on the test specimens. The destructive earthquakes that occurred at the north part of Algeria during the period of 1954-2003 resulted in an initiative from the Algerian authorities for the construction of a shaking simulator at the National Earthquake Engineering Research Center, CGS. The acceleration tracking performance and specifically the inability of the earthquake simulator to accurately replicate the input signal can be considered as the main challenge during shaking table test. The objective of this study is to validate the uni-axial sinusoidal performances curves and to assess the accuracy and fidelity in signal reproduction using the advanced adaptive control techniques incorporated into the MTS Digital controller and software of the CGS shaking table. A set of shake table tests using harmonic and earthquake acceleration records as reference/commanded signals were performed for four test configurations: bare table, 60 t rigid mass and two 20 t elastic specimens with natural frequencies of 5 Hz and 10 Hz.

Study on the Integrated UAV Simulation Environment for the Evaluation of the Midair Collision Alarm System (공중충돌경보시스템 평가를 위한 통합 무인기 시뮬레이션환경 연구)

  • Mun, Seong-yeop;Kim, Ju-young;Lee, Dong-woo;Baek, Gyeong Min;Kim, Jin Sil;Na, Jongwhoa
    • Journal of Advanced Navigation Technology
    • /
    • v.19 no.4
    • /
    • pp.288-298
    • /
    • 2015
  • For the commercialization of unmanned aircraft, we must validate the safety of the air/ground collision alert systems (CAS). The validation procedure of CAS requires the flight test which is not only expensive but also dangerous. To alleviate this problem, we need the simulation based validation process for the CAS. We developed an integrated UAV simulation (IUS) environment which interconnect the flight simulator, the Matlab/Simulink, and a target avionics simulation model. We developed the collision warning module of the TCAS and tested using IUS and flight encounter models. Using IUS, we can evaluate the performance and reliability of a target avionic system at the preliminary design stage of a development life cycle.

Development of Fuel Quantity Measurement System for Aircraft Supplementary Fuel Tank (항공기 보조연료탱크 연료량측정시스템 개발)

  • Yang, Junmo;Kim, Bonggyun;Hahn, Sunghyun;Lee, Sangchul
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.11
    • /
    • pp.927-933
    • /
    • 2020
  • This paper presents a fuel quantity measurement system (FQMS) for an aircraft supplementary fuel tank considering the change of aircraft attitude. The developed FQMS consists of fuel sensors, a signal process unit, an indicator and a software to estimate the fuel quantity from the sensor data. To replicate the change of the roll and pitch attitude on the ground, the test simulator is developed in this work. Using the test simulator, the sensor data at various fuel quantities, roll and pitch angles are automatically measured to build a training data set. The data-driven software to estimate the fuel quantity is then developed using a trilinear interpolation method with the training data set. The developed FQMS is verified by investigating the fuel estimation error of the test data set that we know the true values. Through the test, it is confirmed that the error of the developed FQMS system satisfies the criteria of TSO-C55 document.

Development of Low Altitude Terrain Following System based on TERain PROfile Matching (TERPROM 기반의 저고도 지형추적시스템 개발)

  • Kim, Chong-sup;Cho, In-je;Lee, Dong-Kyu;Kang, Im-Ju
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.9
    • /
    • pp.888-897
    • /
    • 2015
  • A flight capability to take a terrain following flight near the ground is required to reduce the probability that a fighter aircraft can be detected by foe's radar fence in the battlefield. The success rate for mission flight has increased by adopting TFS (Terrain Following System) to enable the modern advanced fighter to fly safely near the ground at the low altitude. This system has applied to the state-of-the-art fighter and bomber, such as B-1, F-111, F-16 E/F and F-15, since the research begins from 1960's. In this paper, the terrain following system and GCAS (Ground Collision Avoidance System) was developed, based on a digital database with UTAS's TERPRROM (TERrain PROfile Matching) equipment. This system calculates the relative location of the aircraft in the terrain database by using the aircraft status information provided by the radar altimeter and the INS (Inertial Navigation System), based on the digital terrain database loaded previously in the DTC (Data Transfer Cartridge), and figures out terrain features around. And, the system is a manual terrain following system which makes a steering command cue refer to flight path marker, on the HUD (Head Up Display), for vertical acceleration essential for terrain following flight and enables a pilot to follow it. The cue is based on the recognized terrain features and TCH (Target Clearance Height) set by a pilot in advance. The developed terrain following system was verified in the real-time pilot evaluation in FA-50 HQS (Handling Quality Simulator) environment.

Design and Fabrication of Dual-band Compact Monopole Antenna with Two Branches for Wi-Fi Mobile Applications (두개의 브랜치 라인을 갖는 와이파이 이동통신용 이중 대역 모노폴 안테나의 설계와 제작)

  • Jeong, Gye-Taek;Ju, Young-Rim;Yoon, Joong-Han
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.1
    • /
    • pp.41-47
    • /
    • 2013
  • This letter describes a dual-band compact monopole antenna with two branches for Wi-Fi applications. The proposed antenna is based on a planar monopole design, and composed of two branches of radiating patches for dual-band operation. The ground size of the antenna matches the ground size of a typical hand-held cellular phone for improved compatibility with mobile phone printed circuit boards. The antenna is designed using a simulator and fabricated with optimized parameters. The fabricated antenna is measured at the lower and higher operating frequencies, and the return loss coefficient, gain, and radiation patterns are determined.

Numerical investigation of effects of rotating downdraft on tornado-like-vortex characteristics

  • Cao, Shuyang;Wang, Mengen;Zhu, Jinwei;Cao, Jinxin;Tamura, Tetsuro;Yang, Qingshan
    • Wind and Structures
    • /
    • v.26 no.3
    • /
    • pp.115-128
    • /
    • 2018
  • Appropriate modeling of a tornado-like vortex is a prerequisite when studying the near-ground wind characteristics of a tornado and tornado-induced wind loads on structures. Both Ward- and ISU-type tornado simulators employ guide vanes to induce angular momentum to converge flow in order to generate tornado-like vortices. But in the Ward-type simulator, the guide vanes are mounted near the ground while in the ISU-type they are located at a high position to allow vertical circulation of flow that creates a rotating downdraft to generate a tornado-like vortex. In this study, numerical simulations were performed to reproduce tornado-like vortices using both Ward-type and ISU-type tornado simulators, from which the effects of rotating downdraft on the vortex characteristics were clarified. Particular attention was devoted to the wander of tornado-like vortices, and their dependences on swirl ratio and fetch length were investigated. The present study showed that the dynamic vortex structure depends significantly on the vortex-generating mechanism, although the time-averaged structure remains similar. This feature should be taken into consideration when tornado-like-vortex simulators are utilized to investigate tornado-induced wind forces on structures.

A Study of Laboratory Measurement of EO GRD Resolution for Airborne EO/IR Sensor (항공용 EO/IR 센서의 EO GRD 분해능 실험실 측정 연구)

  • Huh, Joon;Kim, Chang-Woo;Kim, Sungsoo;Kim, Byoung-Wan
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.17 no.6
    • /
    • pp.793-799
    • /
    • 2014
  • EO GRD(Ground Resolved Distance) resolution of airborne EO/IR(Electro-Optical/Infrared) sensor is a critical factor in test and evaluation for EO sensor performance. We propose the laboratory measurement set-up for EO GRD by constructing optical collimator which includes integrated sphere, blackbody, equivalent 3-bar target and 6 DOF motion simulator. GRD is measured in the photographic imagery of bar targets by 3 different distances for 3 EO/IR sensors and the measured results were analyzed statistically. We found that at least 7 sheets of imagery are needed in order to obtain meaningful EO GRD. The result of statistical analysis shows that the distribution of the measured GRD is nearly symmetric about the average GRD, and the better imagery ratio above the average GRD is about 40~70%. Also from the best GRD analysis, it is estimated that the design goal for EO GRD should be 30% superior to the required GRD.

A Study Of Reliability Check Method for Generator Field Ground Detectors (발전기 계자 접지 검출회로 신뢰성 점검에 관한 연구)

  • Cheon, Young-Sik;Park, Ho-Chul;Won, Hak-Jai;Han, Seung-Mun;Han, Jeong-Hoon
    • Proceedings of the KIEE Conference
    • /
    • 1999.11c
    • /
    • pp.585-587
    • /
    • 1999
  • The rotorbody and rotor winding of generator are isolated by an insulator and the output characteristic of the generator is maintained in the best states. Only when an insulation resistance between them is over a certain extent. The aim of this research is to develop the simulator for rotor earth fault detection circuits. It is composed of the power resource which is to control the virtual field voltage, stepping motor which is to give virtual ground. It is possible to inspect with the device and program developed in this study in the same as real operating condition and evaluate the integrity of generator rotor through the function of data acquisition and graphic output. If these technologies will be applied to the inspection, prevent a damage of the generator and contribute to improve maintenance reliance.

  • PDF