• Title/Summary/Keyword: Ground Separation Test

Search Result 53, Processing Time 0.031 seconds

Ground Separation Test to Verify Separation Stability of External Fuel Tank (외부연료탱크의 분리 안정성 검증을 위한 지상 분리시험)

  • Kim, Hyun-gi;Hong, Seung-ho;Ha, Byung-geun;Kim, Sung-chan;Lee, Jun-won
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.3
    • /
    • pp.99-104
    • /
    • 2022
  • Aircraft pylon connects the engine or external stores to the main wing, and transfers the load acting on the pylon to the main structure of the aircraft. In particular, it should perform the function of separating the external store mounted on the pylon in case of emergency or mission performance. At this time, if the separation of the external store is not performed properly due to peripheral air flow or functional problems during the separation process of the external store, it may seriously impact the survivability of the aircraft. For this reason, to apply an external attachment to an aircraft, it is necessary to prove the stability of the external attachment in the separation situation in advance. In this paper, we present the result of the ground separation test performed to confirm that the external fuel tank, which is an external attachment, can be safely separated from the pylon. As a result of the test, the separation movement of the external fuel tank was measured with a high-speed camera, and the stability of the separation of the external fuel tank from the pylon were confirmed through the ground separation test. Additionally, the test result provides basic data for the stability evaluation of the separation of external attachments in actual aircraft.

Ground Ejection Tests to verify the Safe Separation of an Aircraft Mounted Store (항공기 장착 무장의 투하 안정성 검증을 위한 지상무장분리시험)

  • Lee, Jong-Hong;Choi, Seok-Min;Lee, Min-Hyoung;Lee, Chul;Jung, Jae-Won
    • Journal of Advanced Navigation Technology
    • /
    • v.22 no.2
    • /
    • pp.70-75
    • /
    • 2018
  • The mounted store on an aircraft shall be subjected to an ground separation test to verify that a safe separation has been made before it is actually installed to the aircraft. In this study, ground ejection test was conducted with dummy missile to verify the stability of the drop on the land. Bomb rack unit essential to testing ground ejection test, operate at high pressure and produce a significant ejection force to push the missile away from any large orifice. Bomb rack unit modified their bombe pressure and orifice diameter to photograph the drop movement of dummy missile with high-speed camera and to analyze their drop displacement and speed. It is considered useful to provide the initial data for the ejection force analysis on aircraft with actual flight and to carry out the ground separation tests of aircraft with future developments.

Potential Distribution near Concrete Pole According to the position of Ground Rod (접지봉 설치에 따른 전주 주변의 전위분포)

  • Lee, B.H.;Jung, H.U.;Choi, C.H.;Cho, S.C.;Baek, Y.H.;Lee, K.S.;Ahn, C.H.
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.342-346
    • /
    • 2006
  • This paper describes ground surface potential rises and touch voltage. The more soil resistivity of upper layer is lower, the more ground surface potential rise is increased. Ground surface potential rise is increased as the buried depth of ground rod in lowered. Ground surface potential rises were measured in the test site and compared with results by CDEGS program. Touch voltages according to the separation distance of ground rod were measured in four directions. Touch voltages were remarkably changed by separation distance and contact position.

  • PDF

An Integrated Approach to the Dynamic Testing of Aerospace Structures (항공기 구조물의 동적 거동 시험/해석 절차)

  • Lee, Sang-Yeop;LMS Intl, LMS Intl
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.348-357
    • /
    • 2006
  • Ground Vibration Tests (GVT) are needed on au new aircraft types and as part of certification. Its first objective is to verify models used for the calculation and prediction of the dynamic behavior of the structure. The main objectives of this paper are to introduce 'the integrated approach of dynamic testing for aerospace structure' in detail and 'The research projects in which LMS participated in aerospace structural dynamic area'

  • PDF

Hypersonic Aero-Heating Ground-Test Simulation Technique

  • Li, Ruiqu;Yao, Dapeng;Sha, Xinguo;Gong, Jian
    • International Journal of Aerospace System Engineering
    • /
    • v.2 no.2
    • /
    • pp.50-53
    • /
    • 2015
  • It would encounter some complicated flow fields, such as transition, separation, reattachment and disturbances, in the hypersonic flight. Thus, it is difficult to theoretically analyze the hypersonic aerothermodynamics effects, so that the ground-test simulation is thought of as one of the most important methods to improve the understanding level of the hypersonic aerothermodynamics. However, the aero-heating tests could not simulate all aerodynamics and geometry parameters in the real flight due to the differences between the experimental environments supplied by the ground facilities and the flight, so that the feasible technique for the ground-test simulation of the hypersonic aerothermodynamics effects is required to be advanced. The key parameters that are especially required to simulate for aero-heating tests are analyzed and one detailed approach is suggested to perform the experimental investigation on the hypersonic aero-heating effects in the ground facilities in this paper, and the tests are performed in the FD-20 gun tunnel of CAAA (China Academy of Aerospace Aerodynamics) to give out the data which could be used to confirm the equation from the theoretical analysis.

Performance Analysis and Configuration Design of the Thruster Nozzle for Ground-firing Test and Evaluation (지상연소시험평가용 추력기 노즐의 성능해석과 형상설계)

  • Kam, Ho-Dong;Kim, Jeong-Soo;Bae, Dae-Seok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.16 no.2
    • /
    • pp.10-16
    • /
    • 2012
  • A computational analysis of nozzle flow characteristics and plume structure is conducted to examine performance of the supersonic nozzle employed in a thruster for ground firing test. At first, flow simulations in two-dimensional converging-diverging nozzle are performed for the verification of computational capability as well as turbulence model validity. Axisymmetric converging-diverging nozzles for ground firing test are analyzed with the k-${\omega}$ SST model. A performance penalty caused by flow separation in a diverging section is observed in initially-designed nozzle. The performance could be enhanced by the modification of the diverging section of nozzle contour.

Performance Analysis of the Supersonic Nozzle Employed in a Small Liquid-rocket Engine for Ground Firing Test (소형 액체로켓엔진 지상연소시험용 초음속 노즐의 성능해석)

  • Kam, Ho-Dong;Kim, Jeong-Soo;Bae, Dae-Seok;Lee, Jae-Won
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.321-324
    • /
    • 2011
  • A computational analysis of nozzle flow characteristics and plume structure using Reynolds-averaged Navier-Stokes equations with $k-{\omega}$ SST turbulence model was conducted to examine performance of the supersonic nozzle employed in a small liquid-rocket engine for ground firing test. Computed results and experimental outcome of 2-D converging-diverging nozzle flow were compared for verifying the computational capability as well as the turbulence model validity. Numerical computations of 2-D axisymmetric nozzle flow was carried out with the selected model. As a result, flow separation with backflow appeared around the nozzle exit. This investigation was reported as a background data for the optimal nozzle design of small liquid-propellant rocket engine for ground test.

  • PDF

The Study on Train Separation Control Technology using Balise for Conventional Line Speed Up (기존선 속도 향상을 위한 발리스를 이용하는 열차간격제어 기술에 대한 연구)

  • Baek, Jong-Hyen;Lee, Chang-Goo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.2
    • /
    • pp.256-263
    • /
    • 2009
  • KORAIL carries out an improvement project of railway signaling system for the conventional line from the existing method which permits a train to move within limited speed the ground signal of ATS(Automatic Train Stop) system. The proposed system makes possible that a train can be driven using a speed profile created by onboard signaling system(ATP) with the movement authority from ground balise. A driving test over 100,000km is being executed by developing a tilting train for the speed elevation on the conventional line. And, the introduction of the tilting train by ATP system to the Jung-ang line is expected. However, a speed elevation on a curved line section has a restriction. Therefore, research on safety braking model and train separation control technology for the localization of ATP system is required preferentially. In this paper, we presented a safety braking model of ATP system and a train separation control method that use ground balise as variable information provider, and executed a performance simulation.

Foundation-soil-foundation Interaction of Shallow Foundations Using Geo Centrifuge: Experimental Approach (원심모형실험을 이용한 얕은 기초의 기초-지반-기초 상호작용: 실험적 접근)

  • Ngo, Linh Van;Kim, Jae-Min;Lim, Jaesung;Lee, Changho
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.1
    • /
    • pp.25-35
    • /
    • 2018
  • Geocentrifuge tests are performed to investigate the structure-soil-structure interaction of shallow foundations that have various sizes. The soil specimen is prepared by using the air-pluviation, and the dynamic responses of the foundation are monitored with separation distances between the two foundations and the embedment. During the centrifugal test, the measured ground acceleration shows a tendency to increase with the increase of the input seismic amplitude, and maximum acceleration is measured at the surface due to the ground amplification. As the separation distance between the two foundations decreases, the ratio of the response spectral acceleration (RRS) increases and the period at the peak RRS decreases due to the structure-soil-structure interaction (SSSI). The RRS of the two foundations tends to decrease when the foundations are buried in the ground at the same separation distance.

The Interface Test between LEO Satellite and Ground Station (저궤도위성과 지상국 간 접속 검증 시험)

  • Kwon, Dong-Young;Jung, Ok-Chul;Kim, HeeSub
    • Aerospace Engineering and Technology
    • /
    • v.11 no.2
    • /
    • pp.49-56
    • /
    • 2012
  • LEO Satellite performs the operations and missions by FSW(Flight Software) after separation from a launch vehicle. Many of the operations by FSW are automatically conducted by the algorithms of FSW. In the case of the IAC(Initial Activation and Checkout) operations, a mission scheduling, an orbit transition, etc, however, a decision and a control of the satellite operators or manufacturers are required in order to operate the satellite safely. For this, the wireless communication channel between a satellite and a ground station should be prepared to receive telemetries and to transmit tele-commands for controlling FSW properly. Therefore, the verification of the interface between KOMPSAT-3 and a ground station is essential. This verification test is named the satellite end-to-end test. In this paper, we show the design process of the satellite end-to-end test and test results.