• Title/Summary/Keyword: Ground Remote Sensing

Search Result 836, Processing Time 0.026 seconds

Retrieval of Depolarization ratio using Sunphotometer data and Comparison with LIDAR Depolarization ratio (대기 에어로졸 고도 분포와 선포토미터 편광소멸도와의 연관성 연구)

  • Lee, Kyunghwa;Kim, Kwanchul;Noh, Youngmin
    • Korean Journal of Remote Sensing
    • /
    • v.32 no.2
    • /
    • pp.133-139
    • /
    • 2016
  • Particle depolarization ratios (DPRs) at 440, 675, 870 and 1020 nm are retrieved from AERONET sun/sky radiometer observations at Gosan and Kongju in South Korea. The retrieved results show good agreement with DPRs measured by lidar at 532 nm. High DPRs are found when Asian dust passes through at the upper atmosphere over 2 km above the Earth's surface. In case of lower atmosphere less than 2 km from the ground, DPRs are relatively low due to the small amount of dust particles and mixing of dust with air pollutants.

The Design of MSC(Multi-Spectral Camera) Calibration Operation

  • Yong Sang-Soon;Kang Geum-Sil;Jang Young-Jun;Kim Jong-Ah;Kang Song-Doug;Paik Hong-Yul
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.601-603
    • /
    • 2004
  • Multi-Spectral Camera(MSC) is a payload on the KOMPSAT -2 satellite to perform the earth remote sensing. The instrument images the earth using a push-broom motion with a swath width of 15 km and a ground sample distance (GSD) of 1 m over the entire field of view (FOV) at altitude 685 Km. The instrument is designed to have an on-orbit operation duty cycle of $20\%$ over the mission lifetime of 3 years with the functions of programmable gain! offset and onboard image data compression/storage. MSC instrument has one(1) channel for panchromatic Imaging and four(4) channel for multi-spectral Imaging covering the spectral range from 450nm to 900nm using TDI CCD Focal Plane Array (FPA). In this paper, the configuration, the interface of MSC hardware and the MSC operation concept are described. And the method of the MSC calibration are described and the design of MSC calibration operation to measure the change of MSC after Launch & Early Operation(LEOP) and normal mission operations are discussed and analyzed.

  • PDF

Determination of Ionospheric Delay Scale Factor for Low Earth Orbit using the International Reference Ionosphere Model (IRI 모델을 이용한 저궤도 전리층 지연값 배율 결정)

  • Kim, Jeongrae;Kim, Mingyu
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.2
    • /
    • pp.331-339
    • /
    • 2014
  • Determination of an ionospheric delay scale factor, which converts ground-based ionospheric delay into low Earth orbit ionospheric delay, using the international reference ionosphere model is proposed. Ionospheric delay from international GNSS service model combined with IRI-derived scale factor is evaluated with NASA GRACE satellite data. At approximately 480km altitude, mean and standard deviation of the scale factor are 0.25 and 0.01 in 2004. The scale factor reaches high in night time and Spring and Fall seasons. Ionospheric delay error by the proposed method has a mean of 3.50 TECU in 2004.

Water body extraction in SAR image using water body texture index

  • Ye, Chul-Soo
    • Korean Journal of Remote Sensing
    • /
    • v.31 no.4
    • /
    • pp.337-346
    • /
    • 2015
  • Water body extraction based on backscatter information is an essential process to analyze floodaffected areas from Synthetic Aperture Radar (SAR) image. Water body in SAR image tends to have low backscatter values due to homogeneous surface of water, while non-water body has higher backscatter values than water body. Non-water body, however, may also have low backscatter values in high resolution SAR image such as Kompsat-5 image, depending on surface characteristic of the ground. The objective of this paper is to present a method to increase backscatter contrast between water body and non-water body and also to remove efficiently misclassified pixels beyond true water body area. We create an entropy image using a Gray Level Co-occurrence Matrix (GLCM) and classify the entropy image into water body and non-water body pixels by thresholding of the entropy image. In order to reduce the effect of threshold value, we also propose Water Body Texture Index (WBTI), which measures simultaneously the occurrence of repeated water body pixel pair and the uniformity of water body in the binary entropy image. The proposed method produced high overall accuracy of 99.00% and Kappa coefficient of 90.38% in water body extraction using Kompsat-5 image. The accuracy analysis indicates that the proposed WBTI method is less affected by the choice of threshold value and successfully maintains high overall accuracy and Kappa coefficient in wide threshold range.

Data Quality Determination of Radio Occultation in moist troposphere

  • Yeh, Wen-Hao;Chiu, Tsen-Chieh;Liou, Yuei-An;Huang, Cheng-Yung
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.442-444
    • /
    • 2007
  • How to observe the atmosphere is a subject of atmospheric research. The meteorological satellites and the ground states are used to do observation. However, both ways do not satisfy the requirement of scientists, especially the profiles of atmosphere on the ocean and the data for global atmosphere. Radio occultation (RO) technique, which has been used in planet science, is a method to solve the problem. In RO technique, the low Earth orbit (LEO) satellite receives the two frequency signal of Global Positioning System (GPS) satellite. The excess phase of the signal is calculated to retrieve the profiles of atmosphere parameters. In moist troposphere, the fluctuations appear in the phase of the signal and open loop (OL) is used to resolve it. The quality of the GPS signal generally deteriorates as the altitude decreases. In the procedure, the SNR of the GPS signal is used as the criterion. However, the SNR decreases with fluctuation which makes it difficult to locate the data of poor quality. In this paper, the phase of the signal will be used as part of the criterion.

  • PDF

STUDYING THE CHRONICLE OF TIMBERLAND USING HISTORICAL ORTHOPHOTO AND SATELLITE DATA

  • Cho, Hyoung-Sig;Jayakumar, S.;Heo, Joon
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.576-579
    • /
    • 2007
  • Timber inventory is a good starting point for developing strategies to effectively manage the timberland. In the sale of timberland, pricing is mostly based on this inventory. For a small timberland, inventory by conventional ground survey could be possible. In the case of large and nationwide business transactions, swift and inexpensive inventory is worth to be considered as the conventional methods require more experienced man power, money and time. In the present study, it was aimed to identify the chronicle of timberland such as changes that has occurred owing to silvicultural activities and by other means using the historical aerial photography and satellite data. Historical aerial photos from National Aerial Photography Program (NAPP), National High Altitude Photography (NHAP), Survey Photography and Landsat satellite data were used. Orthophotos were constructed using the DOQQ and DEM from USGS. Simple photo interpretation technique was employed to classify the orthophoto and satellite data. The plantation area was classified into softwood, mixed and hardwood. The timber age and the corresponding acreage details and the changes were also estimated. The result of this study could be more useful to the timberland buyers to better understand the chronicle of timberland of their interest prior to transactions.

  • PDF

Inverse Brightness Temperature Estimation for Microwave Scanning Radiometer

  • Park, Hyuk;Katkovnik, Vladimir;Kang, Gum-Sil;Kim, Sung-Hyun;Choi, Jun-Ho;Choi, Seh-Wan;Jiang, Jing-Shan;Kim, Yong-Hoon
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.604-609
    • /
    • 2002
  • The passive microwave remote sensing has progressed considerably in recent years. Important earth surface parameters are detected and monitored by airborne and space born radiometers. However the spatial resolution of real aperture measurements is constrained by the antenna aperture size available on orbiting platforms and on the ground. The inverse problem technique is researched in order to improve the spatial resolution of microwave scanning radiometer. We solve a two-dimensional (surface) temperature-imaging problem with a major intention to develop high-resolution methods. In this paper, the scenario for estimation of both radiometer point spread function (PSF) and target configuration is explained. The PSF of the radiometer is assumed to be unknown and estimated from the observations. The configuration and brightness temperature of targets are also estimated. To do this, we deal with the parametric modeling of observation scenario. The performance of developed algorithms is illustrated on two-dimensional experimental data obtained by the water vapor radiometer.

  • PDF

The Design of MSC(Multi-Spectral Camera) System Operation

  • Yong, Sang-Soon;Kong, Jong-Pil;Heo, Haeng-Pal;Kim, Young-Sun;Park, Jong-Euk;Paik, Hong-Yul;Ra, Sung-Woong
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.825-827
    • /
    • 2003
  • Multi-Spectral Camera(MSC) is a payload on the KOMPSAT-2 satellite to perform the earth remote sensing. The instrument images the earth using a push-broom motion with a swath width of 15 km and a ground sample distance (GSD) of 1 m over the entire field of view (FOV) at altitude 685 Km. The instrument is designed to have an on-orbit operation duty cycle of 20% over the mission lifetime of 3 years with the functions of programmable gain/ offset and on-board image data compression/storage. The MSC instrument has one(1) channel for panchromatic imaging and four(4) channel for multi-spectral imaging covering the spectral range from 450nm to 900nm using TDI CCD Focal Plane Array (FPA). In this paper, the architecture and function of MSC hardware including electrical interface and the operation concept which have been established based on the mission requirements are described. And the design and the preparation of MSC system operation are analyzed and discussed.

  • PDF

Optimal Time Period for Using NDVI and LAI to Estimate Rice Yield

  • Yang, Chwen-Ming;Chen, Rong-Kuen
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.10-12
    • /
    • 2003
  • This study was to monitor changes of leaf area index (LAI) and normalized difference vegetation index (NDVI), calculated from ground-based remotely sensed high resolution reflectance spectra, during rice (Oryza sativa L. cv. TNG 67) growth so as to determine their relationships and the optimum time period to use these parameters for yield prediction. Field experiments were conducted at the experimental farm of TARI to obtain various scales of grain yield and values of LAI and NDVI in the first and the second cropping seasons of 2001-2002. It was found that LAI and NDVI can be mutually estimated through an exponential relationship, and hence plant growth information and spectral remote sensing data become complementary counterparts through this linkage. Correlation between yield and LAI was best fitted to a nonlinear function since about 7 weeks after transplanting (WAT). The accumulated and the mean values of LAI from 15 days before heading (DBH) to 15 days after heading (DAH) were the optimum time period to predict rice yield for First Crops, while values calculated from 15 DBH to 10 DAH were the optimal timing for Second Crops.

  • PDF

Comparisons of the Environmental Characteristics of Intertidal Beach and Mudflat

  • Kim, Tae-Rim
    • Korean Journal of Remote Sensing
    • /
    • v.25 no.3
    • /
    • pp.225-231
    • /
    • 2009
  • The characteristics of morphological shapes, wave heights, tidal ranges and sediment sizes are observed and compared between intertidal beach and mudflat. The Mohang sand beach, southwest coast of Korea, is located just next to the large mudflat and has tidal range over 5 meters. Wave measurements are conducted at each entrance of the beach and mudflat as well as at the outside waters representing the incident waves to these different coastal environments. The morphological characteristics are also examined including the sediment size and the slope of the bathymetry, For the observation of morphological shapes, camera monitoring technique is used to measure the spatial information of intertidal bathymetry. The water lines moving on the intertidal flat/beach durinq a flood indicate depth contours between low and high water lines. The water lines extracted from the consecutive images are rectified to get the ground coordinates of each depth contours and integrated to provide three dimensional information of intertidal topography. The wave data show that sand beach is in the condition of severer wave forcing but tidal range is almost identical in both environment. The slope of the mudflat is much milder than the sand beach with finer sediment.