• 제목/요약/키워드: Ground Penetrating Radar (GPR)

검색결과 178건 처리시간 0.034초

도로동공 탐지를 위한 지표투과레이더의 적정 주파수 선정에 관한 연구 (Determining the Optimal Frequency of Ground Penetrating Radar for Detecting Voids in Pavements)

  • 김연태;김부일;김제원;박희문;윤진성
    • 한국도로학회논문집
    • /
    • 제18권2호
    • /
    • pp.37-42
    • /
    • 2016
  • PURPOSES : The objective of this study is to determine the optimal frequency of ground penetrating radar (GPR) testing for detecting the voids under the pavement. METHODS : In order to determine the optimal frequency of GPR testing for void detection, a full-scale test section was constructed to simulate the actual size of voids under the pavement. Voids of various sizes were created by inserting styrofoam at varying depths under the pavement. Subsequently, 250-, 500-, and 800-MHz ground-coupled GPR testing was conducted in the test section and the resulting GPR signals were recorded. The change in the amplitude of these signals was evaluated by varying the GPR frequency, void size, and void depth. The optimum frequency was determined from the amplitude of the signals. RESULTS: The capacity of GPR to detect voids under the pavement was evaluated by using three different ground-coupled GPR frequencies. In the case of the B-scan GPR data, a parabolic shape occurred in the vicinity of the voids. The maximum GPR amplitude in the A-scan data was used to quantitatively determine the void-detection capacity. CONCLUSIONS: The 250-MHz GPR testing enabled the detection of 10 out of 12 simulated voids, whereas the 500-MHz testing allowed the detection of only five. Furthermore, the amplitude of GPR detection associated with 250-MHz testing is significantly higher than that of 500-MHz testing. This indicates that 250-MHz GPR testing is well-suited for the detection of voids located at depths ranging from 0.5~2.0 m. Testing at frequencies lower than 250 MHz is recommended for void detection at depths greater than 2 m.

지반투과 레이더 시스템을 위한 SRD 임펄스 발생기 및 안테나의 설계 및 제작에 관한 연구 (A Study on Design and Fabrication of SRD Impulse Generator and Antenna for Ground Penetrating Radar System)

  • 김형종;신석우;최길웅;최진주;신상열
    • 한국군사과학기술학회지
    • /
    • 제14권3호
    • /
    • pp.509-516
    • /
    • 2011
  • In this paper, a ground penetrating radar(GPR) system is implemented for landmine detection. The performance of the GPR system is associated with the characteristics of local soil and buried target. The choice of the center frequency and the bandwidth of the GPR system are the key factors in the GPR system design. To detect a small and shallow target, the higher frequencies are needed for high depth resolution. We have been designed, fabricated and tested a new impulse generator using step recovery diodes. The measured impulse response has an amplitude of 6.2V and a pulse width of 250ps. The implemented GPR system has been tested real environmental conditions and has proved its ability to detect a small buried target.

상호 결합을 최소화한 연속파(CW) Ground Penetrating Radar(GPR)용 공기 도파관 안테나 설계 (Design of Decoupled PMC-backed Air Waveguide Antenna for Continuous Wave Ground Penetrating Radar)

  • 제도흥;나정웅
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2001년도 하계종합학술대회 논문집(1)
    • /
    • pp.177-180
    • /
    • 2001
  • A decoupled, wide-band, perfectly magnetically conductor(PMC)-backed air waveguide antenna is designed and constructed for the use of the continuous electromagnetic wave ground penetrating radar in the frequency range from 200MHz to 600MHz. Two planar dipoles are located inside air slab covered by PMC on the top side and separated by an air gap from the bottom ground interface. The coupling between the transmitting and the receiving dipoles is calculated by less than -60dB over the frequency from 200MHz to 600MHz.

  • PDF

GPR에 의한 지반 구조물 탐사 (Investigations of Underground Structures by Ground Penetrating Radar)

  • 김학수;임해룡;배성호
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 한국지구물리탐사학회 1999년도 제2회 학술발표회
    • /
    • pp.65-91
    • /
    • 1999
  • GPR이 국내에 소개된지 6년 이상이 지났으며 그 동안 GPR이 가지는 다양한 적용 분야 및 그 방법의 편의성과 경제성에 의해 많은 건설현장에서 수많은 이용 사례들이 축적되었다. 따라서 본 논문에서는 이들 실제 사례들을 중심으로 GPR이 가지는 특성 및 제한을 살펴보고자 하였다.

  • PDF

석회석 원소재의 고품위대 조사를 위한 연구 (A Study on High Graded Limestone Population Area)

  • 김준경
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 한국지구물리탐사학회 2007년도 공동학술대회 논문집
    • /
    • pp.343-348
    • /
    • 2007
  • Geophysical methodology using GPR(Ground Penetrating Radar) were applied both to the limestone producing area(Sambo Mine Company & Haksanri Area) and to Landfill area(Mureung Landfill Site). The investigation results resultant from both the limestone producing area(Sambo Mine Company & Haksanri Area) showed that there are a few events reflected from boundaries between caves and basement rocks. Those from landfill area showed that more complicated and small size events are found. These events could be from different electric characteristics of various kinds of composition materials in the landfill site.

  • PDF

Modelling and Simulation Resolution of Ground-Penetrating Radar Antennas

  • Alsharahi, G.;Mostapha, A. Mint Mohamed;Faize, A.;Driouach, A.
    • Journal of electromagnetic engineering and science
    • /
    • 제16권3호
    • /
    • pp.182-190
    • /
    • 2016
  • The problem of resolution in antenna ground-penetrating radar (GPR) is very important for the investigation and detection of buried targets. We should solve this problem with software or a numeric method. The purposes of this paper are the modelling and simulation resolution of antenna radar GPR using three antennas, arrays (as in the software REFLEXW), the antenna dipole (as in GprMax2D), and a bow-tie antenna (as in the experimental results). The numeric code has been developed for study resolution antennas by scattered electric fields in mode B-scan. Three frequency antennas (500, 800, and 1,000 MHz) have been used in this work. The simulation results were compared with experimental results obtained by Rial and colleagues under the same conditions.

GPR 장비를 이용한 포장두께 탐상에 관한 연구 (The study on the measurement of pavement thickness using GPR(Ground Penetrating Radar) equipment)

  • 박기순;박대현
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1998년도 가을 학술발표대회 논문집(III)
    • /
    • pp.761-766
    • /
    • 1998
  • GPR(Ground Penetrating Radar) designed with a digital-based signal processing technology utilizes to identify very easily the location, the thickness and the level of either an underground embedment or an underground structure. Prior to use of this GPR equipment on pavement of about 15cm thick, the equipment should foremost be calibrated on a known sample under known condition. The purpose of this study is to verify the applicability of the GPR equipment to a model pavement of about 15cm thick. As part of this effort, the general approach of this study is to verify the applicability of the GPR equipment by various thickness levels and its error ranges thru a statistical analysis.

  • PDF

지하공동 탐지를 위한 3차원 시간영역 유한차분 GPR 탐사 모델링 (Three-dimensional Finite-difference Time-domain Modeling of Ground-penetrating Radar Survey for Detection of Underground Cavity)

  • 장한누리;김희준;남명진
    • 지구물리와물리탐사
    • /
    • 제19권1호
    • /
    • pp.20-28
    • /
    • 2016
  • 최근 우리나라 도심지에서 도로 일부가 갑자기 함몰되는 현상이 빈번하게 발생하고 있으며, 이에 의한 피해를 예방하기 위해서는 도로하부의 지하공동의 존재 여부를 조사하는 것이 필요하다. 현재 지표 투과 레이더 탐사(ground-penetrating radar, GPR)가 도심지 도로하부 지하공동을 탐지하기 위한 효과적인 수단으로 인식되고 있다. GPR 탐사방법에 대한 물리적인 과정을 보다 잘 이해하고 지하공동에 대한 효과적인 해석을 위하여 GPR 수치모델링을 통한 이론적인 접근이 필요하다. 이 연구에서는 엇갈린 격자(staggered-grid)를 이용한 3차원 시간영역 유한차분(finite-difference time-domain, FDTD) 법을 사용한 GPR 모델링 알고리듬을 개발하였다. 개발된 3차원 모델링 알고리듬을 이용하여 간단한 공동모델에 대한 GPR 반응을 검토하여 도심지 도로하부 공동 탐사에서 지하공동 부존 정보를 얻는데 효과적으로 적용될 수 있음을 확인하였다.

Ground Penetrating Radar Imaging of a Circular Patterned Ground near King Sejong Station, Antarctica

  • Kim, Kwansoo;Ju, Hyeontae;Lee, Joohan;Chung, Changhyun;Kim, Hyoungkwon;Lee, Sunjoong;Kim, Jisoo
    • 지질공학
    • /
    • 제31권3호
    • /
    • pp.257-267
    • /
    • 2021
  • Constraints on the structure and composition of the active layer are important for understanding permafrost evolution. Soil convection owing to repeated moisture-induced freeze-thaw cycles within the active layer promotes the formation of self-organized patterned ground. Here we present the results of ground penetrating radar (GPR) surveys across a selected sorted circle near King Sejong Station, Antarctica, to better delineate the active layer and its relation to the observed patterned ground structure. We acquire GPR data in both bistatic mode (common mid-points) for precise velocity constraints and monostatic mode (common-offset) for subsurface imaging. Reflections are derived from the active layer-permafrost boundary, organic layer-weathered soil boundary within the active layer, and frozen rock-fracture-filled ice boundary within the permafrost. The base of the imaged sorted circle possesses a convex-down shape in the central silty zone, which is typical for the pattern associated with convection-like soil motion within the active layer. The boundary between the central fine-silty domain and coarse-grained stone border is effectively identified in a radar amplitude contour at the assumed active layer depth, and is further examined in the frequency spectra of the near- and far-offset traces. The far-offset traces and the traces from the lower frequency components dominant on the far-offset traces would be associated with rapid absorption of higher frequency radiowave due to the voids in gravel-rich zone. The presented correlation strategies for analyzing very shallow, thin-layered GPR reflection data can potentially be applied to the various types of patterned ground, particularly for acquiring time-lapse imaging, when electric resistivity tomography is incorporated into the analysis.

지하레이다(GPR)를 이용한 터널 라이닝 비파괴시험에 관한 연구 (Non-Destructive Test for Tunnel Lining Using Ground Penetrating Radar)

  • 김영근;이용호;정한중;신상범;조철현
    • 터널과지하공간
    • /
    • 제7권4호
    • /
    • pp.274-283
    • /
    • 1997
  • It is necessary to estimate the soundness of tunnel using non-destructive tests(NDT) for effective repairs and maintenances. But, the state of tunnel lining could not be investigated using previous non-destructive techniques, due to the various types of support and accessibility only from one side in tunnel lining. Recently, the various non-destructive techniques such as ground penetrating radar(GPR) have been researched and developed for inspection of tunnel lining. In this study, the usefulness and applicability of GPR test in tunnel lining inspection has been investigated through model tests and tunnel site application. This paper described the tunnel lining inspection for lining thickness, cavity and support using GPR test. From the results of tests, we have concluded that GPR test are very useful and effective techniques to look into the interior of lining and measure the lining thickness.

  • PDF