• 제목/요약/키워드: Ground Fault Current Distribution

검색결과 97건 처리시간 0.028초

삼선 지락사고 발생시 매트릭스형 한류기용 리액터의 전자장 분포 해석 (Electromagnetic Field Distribution of Reactors for Matrix-type SFCLs under Triple Lines-to-Ground Faults)

  • 정동철;한태희
    • 전기학회논문지
    • /
    • 제60권2호
    • /
    • pp.459-463
    • /
    • 2011
  • In this paper we reported the characteristics of 1 line, 2 lines and 3 lines-to-ground fault of matrix-type SFCLs (MFCLs) and the electromagnetic field distribution of reactors for MFCLs under the same cases of ground faults. To do this, we fabricated MFCLs with 6 reactors for 3 phases. Each reactor had the length of 270 mm and diameter of 80 mm. 6 reactors were made by Bakelite. We reported experimental results, including fault currents, fault voltages and magnetic field distribution according to phase differences between each phase. We confirmed that experimental results will be useful in next future plan for real power grid.

신경회로망과 DWT를 이용한 고장표시기의 고장검출 개선에 관한 연구 (A Study for the Improvement of Fault Detection on Fault Indicator using DWT and Neural Network)

  • 홍대승;임화영
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 춘계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.46-48
    • /
    • 2007
  • This paper presents research about improvement of fault detection algorithm in FRTU on the feeder of distribution system. FRTU(Feeder Remote Terminal Unit) is applied to fault detection schemes for phase fault, ground fault, and cold load pickup and Inrush restraint functions distinguish the fault current and the normal load current. FRTU is occurred FI(Fault Indicator) when current is over pick-up value also inrush current is occurred FRTU indicate FI. Discrete wavelet transform(DWT) analysis gives the frequency and time-scale information. The neural network system as a fault detector was trained to discriminate inrush current from the fault status by a gradient descent method. In this paper, fault detection is improved using voltage monitoring system with DWT and neural network. These data were measured in actual 22.9kV distribution system.

  • PDF

접지방식이 상이한 철도배전계통의 연장급전을 위한 전기적 특성분석 (Analysis of electric characteristics for extension power supply between different grounding railway distribution system)

  • 정호성;한문섭;이장무;권삼영;박현준
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2005년도 추계학술대회 논문집
    • /
    • pp.736-741
    • /
    • 2005
  • This paper presents electric characteristics analysis and safe configuration for extension power supply between existent 6.6kV ungrounded distribution system and establishment and improvement 22.9kV direct grounding distribution system. For this, we model 6.6kV ungrounded and 22.9kV direct grounding distribution system of urban underground, ground region. and rural electrical, unelectrical region using PSCAD/EMTDC and analyze voltage drop, charging current, ground and short fault through simulation. To analyze electric characteristics of extension power supply, we simulate extension power supply of overhead line of 6.6kV ungrounded system and underground line of 22.9kV direct grounding system of rural electrical region and propose operation condition for safe extension power supply through result of analysis. Characteristics of voltage drop, charging current, ground and short fault appear almost similarly with electrical characteristic of direct power supply. However, because unbalance of phases may cause relay's malfunction of ungrounded system and ground fault current of direct grounding system may demage facilities of ungrounded system, we propose safe system configuration such as impedance grounding system of neutral point.

  • PDF

원형 웨이브릿 변환을 이용한 배전계통의 고장점 추출 (Mother Wavelet Transform using Distribution Utility of Fault Point Extraction)

  • 박인덕;이승환;최광진;김시경
    • 전기학회논문지
    • /
    • 제58권10호
    • /
    • pp.1855-1860
    • /
    • 2009
  • This paper caused a distribution utility to generation of analysis fault several cases on the ground of substation in a energy meter three phase current, voltage data measurement to fault type and characteristics. Mother wavelet transformation of suitable to method algorithm from the distribution utility to generation of fault in image impedance etc several parameter for utility characteristics effective to probatory fault point extraction.

154 kV 변전소 주변압기의 용량 및 운전조건이 22.9 kV 배전계통의 고장전류에 미치는 영향 (An Investigation on the Fault Currents in 22.9 kV Distribution System Due to the Increased Capacity and Operating Conditions of Power Transformers in 154 kV Substation)

  • 조성수;한상옥
    • 전기학회논문지P
    • /
    • 제57권3호
    • /
    • pp.302-310
    • /
    • 2008
  • In order to evaluate the nominal rating of breakers in distribution system due to the increased capacity and operating conditions of power transformers in 154 kV substation, the fault currents in distribution system were calculated by the conventional method and simulations of PSCAD/EMTDC program. Consequently, under the condition of the parallel operation of transformers, the fault currents exceed the nominal current of the breakers in some areas. Without NGR at the secondary neutral of the transformer, the current of single line-to-ground fault was bigger than that of 3-phase fault. Therefore, the results clearly show that the measures to limit the fault currents in distribution system are needed when the increased capacity of power transformers is introduced into 154 kV substation.

주변압기 용량증설에 따른 배전계통의 차단기 정격차단전류 검토 (An Investigation of the nominal rating current for breakers in distribution system due to the increased capacity of power transformer)

  • 조성수;한상옥
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 제39회 하계학술대회
    • /
    • pp.396-397
    • /
    • 2008
  • In order to evaluate the nominal rating of breakers in distribution system due to the increased capacity of power transformer from 60 to 100 MVA, the fault currents are calculated in the condition of 3-phase fault and single line-to-ground fault. Consequently, under the condition of the parallel operation of transformers the fault currents were exceed the nominal rating current of breakers in some areas.

  • PDF

무선충전 전기자동차 전력공급장치에서의 지락사고 특성 분석 (Analisys about the Earth Fault Characteristics in the Wireless Power Transmission System of the Electric Vehicle)

  • 정진수;한운기;박찬엄;송영상;임현성;조민호;유지연
    • 조명전기설비학회논문지
    • /
    • 제28권12호
    • /
    • pp.13-17
    • /
    • 2014
  • In this paper, the risk of electric shock is analyzed through analysis for characterization of potential distribution analysis and ground fault current analysis near the area where there are occurred a ground fault at electric vehicle wireless charging system using 20kHz. Studies for electric vehicle wireless charging system are in the works for development of efficiency increase, pickup shape design and communication module as a fundamental research step. But the research related to electrical safety and is still scarce state so that more studies are necessary to commercialize. As a result of analysis, it is verified that induced voltage is arisen more up to 45V near the a area of accident during ground fault and fault current has been maintained continuously without clearing fault condition by operating characteristics for circuit breaker and inverter.

배전자동화시스템에서 1선 지락 고장 시 고장구간 판단방법 (Faulted Section Identification Method in Case of Single Line to Ground Fault)

  • 김병구;김영국
    • 조명전기설비학회논문지
    • /
    • 제26권5호
    • /
    • pp.34-39
    • /
    • 2012
  • The DAS(Distribution Atomization System) determines a faulted section by using a FI(Fault Indicator) when the fault is occurred on the distribution networks. Sometimes FI is malfunction when the ground fault is occurred on a the distribution networks. As a result difficulties to make decision of faulted section. The cause of the FI malfunction is that the determination using the limited information of the installed area. In this study, a method is proposed to determine faulted section using the amount of the fault current instead of using the FI. This method is determinated faulted section using the fuzzy inference for the collected information from the all switches. The usefulness of the proposed algorithm is verified through the simulation test using PSCAD/EMTDC.

전력용(電力用) 변압기(變壓器) 고장전류(故障電流) 감소(減少)를 위(爲)한 중성점(中性点) 리액터 적용(適用) 연구(硏究) (The Application of Neutral Reactors to Limit Through fault Duty on Substation Transformer.)

  • 장종근;김정부
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1990년도 추계학술대회 논문집 학회본부
    • /
    • pp.210-213
    • /
    • 1990
  • This paper presents the countermeasure to present the main transformer of distribution substation from deteriorating and failing due to repeated magnetic force of the transformer winding by ground fault current in 22.9kV multi grounded distribution system. The Winding strength to the short circuit current is designed to be endurable to the stress of over current. But this design is related to the manufactures. In this paper we examine the application of shunt reactor to the neutral point of the low side of the transformer to reduce fault current due to the fault in the distribution lines we have analysed the fault characteristics of the system and calculated the optimum ohmic values of the neutral reactor.

  • PDF

초전도한류기의 신뢰도에 관한 연구 (A Study on the Reliability of Superconducting Fault Current Limiter)

  • 배인수;김성열;김진오
    • 조명전기설비학회논문지
    • /
    • 제25권1호
    • /
    • pp.101-106
    • /
    • 2011
  • The failure of cooling system in Superconducting Fault Current Limiter(SFCL) increases the impedance of superconducting device, and due to malfunction of inner switches the SFCL opens the distribution system inadvertently when required to do so. In this paper, the ground fault and short circuit fault were classified as active failure and the open circuit fault was passive failure. A reliability model of SFCL considers the passive failure as well as active failure, and in the case study the reliability indices of distribution system are evaluated. It is possible that the reliability evaluation excluded passive failure makes the customers reliability seem so worse than it really was. Therefore, the reliability models of SFCL must include the active failure and passive failure together to evaluate the reliability of distribution system connected SFCL.