• Title/Summary/Keyword: Ground Clutter

Search Result 73, Processing Time 0.017 seconds

Hydrologic Utilization of Radar-Derived Rainfall (I) Optimal Radar Rainfall Estimation (레이더 추정강우의 수문학적 활용 (I): 최적 레이더 강우 추정)

  • Bae Deg-Hyo;Kim Jin-Hoon;Yoon Seong-Sim
    • Journal of Korea Water Resources Association
    • /
    • v.38 no.12 s.161
    • /
    • pp.1039-1049
    • /
    • 2005
  • The objective of this study is to produce optimal radar-derived rainfall for hydrologic utilization. The ground clutter and beam blockage effects from Mt. Kwanak station (E.L 608m) are removed from radar reflectivities by POD analysis. The reflectivities are used to produce radar rainfall data in the form of rain rates (mm/h) by the application of the Marshall-Palmer reflectivity versus rainfall relationship. However, these radar-derived rainfall are underestimated in temporal and spatial scale compared with observed one, so it is necessary to hire a correction scheme based on the gauge-to-radar (G/R) statistical adjustment technique. The selected watershed for studying the real-time correction of radar-rainfall estimation is the Soyang dam site, which is located approximately 100km east of Kwanak radar station. The results indicate that adjusted radar rainfall with the gauge measurement have reasonal G/R ratio ranged on 0.95-1.32 and less uncertainty with that mean standard deviation of G/R ratio are decreased by $9-28\%$. Mean areal precipitation from adjusted radar rainfall are well agreed to the observed one on the Soyang River watershed. It is concluded that the real-time bias adjustment scheme is useful to estimate accurate basin-based radar rainfall for hydrologic application.

Application of the Radar Rainfall Estimates Using the Hybrid Scan Reflectivity Technique to the Hydrologic Model (Hybrid Scan Reflectivity 기법을 이용한 레이더 강우량의 수문모형 적용)

  • Lee, Jae-Kyoung;Lee, Min-Ho;Suk, Mi-Kyung;Park, Hye-Sook
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.10
    • /
    • pp.867-878
    • /
    • 2014
  • Due to the nature of weather radar, blank areas occur due to impediments to observation, such as the ground clutter. Radar beam blockages have resulted in the underestimation rainfall amounts. To overcome these limitations, this study developed the Hybrid Scan Reflectivity (HSR) technique and compared the HSR results with existing methods. As a result, the HSR technique was able to estimate rainfalls in areas from which no reflectivity information was observable using existing methods. In case of estimating rainfalls depending on reflectivity scan techniques and beam-blockage/non beam-blockage, the HSR accuracy is superior. Furthermore, rainfall amounts derived from each method was inputted to the HEC-HMS to examine the accuracy of the flood simulations. The accuracy of the results using the HSR technique in contrast to the RAR calculation system and M-P relation was improved by 7% and 10%(based on correlation coefficients), and 18% and 34%(based on Nash-Sutcliffe Efficiency), on average, respectively. Therefore, it is advised that the HSR technique be utilized in the hydrology field to estimate flood discharge more accurately.

X-band Pulsed Doppler Radar Development for Helicopter (헬기 탑재 X-밴드 펄스 도플러 레이다 시험 개발)

  • Kwag Young-Kil;Choi Min-Su;Bae Jae-Hoon;Jeon In-Pyung;Hwang Kwang-Yun;Yang Joo-Yoel;Kim Do-Heon;Kang Jung-Wan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.8 s.111
    • /
    • pp.773-787
    • /
    • 2006
  • An airborne radar is an essential aviation electronic system for the aircraft to perform various civil and/or military missions in all weather environments. This paper presents the design, development, and test results of the multi-mode X-band pulsed Doppler radar system test model for helicopter-borne flight test. This radar system consists of 4 LRUs(Line-Replacement Unit), which include antenna unit, transmitter and receiver unit, radar signal & data processing unit and display Unit. The developed core technologies include the planar array antenna, TWTA transmitter, coherent I/Q detector, digital pulse compression, MTI, DSP based Doppler FFT filter, adaptive CFAR, moving clutter compensation, platform motion stabilizer, and tracking capability. The design performance of the developed radar system is verified through various ground fixed and moving vehicle test as well as helicopter-borne field tests including MTD(Moving Target Detector) capability for the Doppler compensation due to the moving platform motion.