• Title/Summary/Keyword: Ground/Flight Test

Search Result 281, Processing Time 0.026 seconds

Test Method and Results of Lightning Indirect Effects for Helicopter-mounted Missile System (헬기 탑재 유도탄 체계에 대한 낙뢰의 간접영향 시험방안 및 결과)

  • Lee, Jonghae;Lee, Sang-wook;Yang, Wonhyuk;Kim, Sangsik
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.5
    • /
    • pp.359-365
    • /
    • 2022
  • Air-to-ground missile(AGM), which can be operated by being mounted on the outside of the aircraft, is capable of precision strikes, ensuring high survivability. Helicopter, which is one of the AGM operating platforms, is reported to experience a lightning strike once between 1000 and 20000 flight hours in average. When the lightning strikes the helicopter fuselage, lightning transient signal can be induced to internal and external electronic equipment cables through the skin of the helicopter. If the transient signal exceeding the criteria to electrically initiated device(EID) related to the explosive in the AGM can affect the safety of the helicopter by a warhead explosion, etc. In this paper, we suggest an indirect lightning test method to prove the safety of AGM on helicopter, and present the indirect lightning test results.

Design and Application of Database System for Dynamic Balancing Test of Helicopter Main Rotor Blade (헬리콥터 주로터 블레이드의 동적밸런싱 시험에 대한 데이터베이스 설계 및 적용)

  • Yoon, Byung-Il;Paek, Seung-Kil;Song, Keun-Woong;Kim, Deog-Kwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.8
    • /
    • pp.582-589
    • /
    • 2019
  • The dynamic balancing test of helicopter main rotor blades is a blade rotation test conducted on the ground to make the track of each blade and the load on each pitch rod to a similar level before the flight tests. The purpose of the test is to reduce the vibration occurring on main rotor system as a result of dissimilarity of each blade. The RTB test has been performed for a long period at Whirl Tower Test Facility located in Goheung Flight Centre, accumulating its data. As the amount of the results has become increasingly enormous the needs for the development of database system has been raised to manage the data with effective method. This research aimed to describe the development of Dynamic-Balancing Database System for the RTB test results. For the design of the database system the informations of RTB test results have been categorized into properties, connecting each others according to its logical meaning, and comprised into a database system with relational elements. It has been shown in this paper that the Dynamic Balancing database system enables to effectively accumulate the RTB test data and to be utilized for the data analysis.

Design of Electromechanical Actuator Capable of Simultaneous Control of Aerodynamic and Thrust Vector (공력과 추력방향 동시 제어가 가능한 전기식 구동장치 설계)

  • Lee, Ha Jun;Yoon, Kiwon;Song, In Seong;Park, Chang Kyoo;Lee, Young Cheol
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.1
    • /
    • pp.35-42
    • /
    • 2020
  • Electromechanical Actuator(EMA) for flight vehicles generally serves to control the fin deflection angle or the thrust vector angle. This paper deals with design and development of EMA for both aerodynamic control and thrust vector control. In this paper, a novel compact EMA is proposed that can simultaneously control both the tail fin and the jet vane with one actuator and detach the jet vane after vertical launch and rapid turn of the flight vehicle so as to increase efficiency during flying to target. To do this, we designed the EMA using a push-push link mechanism and derived a mathematical model. The mathematical model is validated by comparing simulation result and experimental data. The performance and reliability of the proposed EMA have been verified through performance test, environmental test and ground test. The proposed EMA is expected to be useful as an EMA for flight vehicles because of its simple and compact structure, as well as its performance and reliability.

아리랑 위성 2호 X-대역 안테나 햇 제작 및 시험

  • Lee, Jin-Ho;Lee, Na-Young;Moon, Hong-Youl;Kim, Hee-Seob;Kim, Gyu-Sun
    • Aerospace Engineering and Technology
    • /
    • v.4 no.1
    • /
    • pp.103-107
    • /
    • 2005
  • There is an X-band transmission system in KOMPSAT-2 in order to downlink the acquired image data in high speed. KOMPSAT-2 employs a steerable high gain X-band antenna for that purpose. During the ground test, the X-band RF radiation is so strong that it has to be controlled for safety, while spacecraft needs to keep flight configuration. Also in a launch site of which all test facilities are the subjects of strict radiation control, the antenna system should be tested again without any change in the configuration. To limit the actual radiation of RF power, an antenna hat was manufactured and thoroughly tested to demonstrate the spacecraft safety when using it.

  • PDF

Numerical Analysis for Slag Deposition in the Kick Motor (킥모터 슬래그 적층에 대한 수치해석)

  • Jang, Je-Sun;Kim, Byung-Hun;Cho, In-Hyun
    • Aerospace Engineering and Technology
    • /
    • v.7 no.2
    • /
    • pp.131-143
    • /
    • 2008
  • Slag mass deposition was required to predict performance accurately of KSLV-I kick motor(KM) system. The validation of the numerical analysis was performed with mass flow rate measured at 4th ground test of the KM. The study described here included internal flow field of KM at various time steps during burning. Slag mass accumulation was computed through the aluminum oxide particle paths to deviate from the gas flow streamlines in flight. These numerical analysis was performed with Fluent 6.3 program The effects for the acceleration, origins and diameters of the aluminum oxide particles was analyzed, finally the total slag mass accumulation was acquired. We confirmed that the slag mass deposition was agreement well with predicted slag mass based on kick motor the grounded test.

  • PDF

Development of Construction Simulation Apparatus on Centrifugal Experiment (원심모형실험을 위한 시공단계모사장비개발)

  • Kim, You-Seok;Kim, Kyoung-O;Lee, Jong-Pil;Park, Jin-Woo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.979-990
    • /
    • 2010
  • Although a centrifuge model test is performed with scaled models, it has a lot of advantages compared with usual scale model tests, for the reproduction of stress levels equal to a full scale test is possible. At the beginning of the Daewoo Institute of Construction Technology, a servo-motor-driven single axis actuator was introduced and has been in use with a geo-centrifuge. However, for variety of experiments and construction stage simulation, various apparatuses have been developed, such as a vacuum generator, a lateral actuator for tidal power simulation, a gravel hopper and a sand drainer for filled-up ground, and a water level controller. The apparatuses have been manufactured with enough strength and durability to be operated under specific g levels. This paper presents the properties of the apparatuses and the results of the tests performed with those.

  • PDF

A Study on Design and Verification of Power Monitoring Unit for Unmanned Aerial Vehicle (무인항공기용 전원모니터링장치 설계 및 검증에 관한 연구)

  • Woo, Hee-Chae;Kim, Young-Tae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.4
    • /
    • pp.303-310
    • /
    • 2020
  • This paper describes a Power Monitoring Unit (PMU) for Unmanned Aerial Vehicle (UAV) electrical system, It is designed for the PMU which performs data sensing of generator, transformer rectifier unit (TRU), battery and gear box installed in UAV and operate power ON/OFF devices of mission equipment. The PMU measures the voltage and current for the aircraft power source (generators, transformer rectifier unit and battery), measures the pressure and temperature of the gearbox, and performs the mission equipment power command received from the mission computer. The PMU was designed to meet the requirements of the UAV, and was performed through structure/thermal analysis, environmental test, EMI test and ground/flight tests.

A Study on the Helicopter Pilot's Workload Influences by 'Surprise and Startle Effect' in the Abnormal Situation - Comparison by Pilot Certificate (Private and Commercial) - (비정상 상황에서 '놀람과 깜짝놀람의 영향(Surprise and Startle Effect)'이 헬리콥터 조종사의 작업부하(Workload)에 미치는 영향에 관한 연구 - 자격증명(자가용 및 사업용) 조종사의 비교 -)

  • Lee, Seokjong;Lee, Kangseok;Park, Wontae
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.30 no.2
    • /
    • pp.44-54
    • /
    • 2022
  • An empirical analysis was conducted on the workload of helicopter pilots flying in high-risk flight environments such as ground obstacles and weather effects at low altitudes. To evaluate the workload, an independent sample t-test was performed using the NASA-TLX evaluation method most suitable for the aviation field, and the workload score was calculated by applying the analytical stratification method (AHP) to compare and analyze private and commercial pilots. There is a significant difference in mean between private and commercial pilots and the result of work load was obtained over 70%. This paper studied the 'surprise and startle effect' on the helicopter field for the first time. In the future, it is intended to contribute to the safe operation of helicopters by presenting a method for effective safety management by utilizing it in the field of education and training for helicopter pilots and providing basic data for preventing accidents caused by human error.

Development Trend of Cold Gas Propulsion System of a Simulator for Maneuvering and Attitude Control Design Verification of Spacecraft (우주비행체 기동 및 자세제어 설계 검증을 위한 시뮬레이터의 냉가스 추진시스템 개발 동향)

  • Kim, Jae-Hoon;Lee, Kyun Ho;Hong, Sung Kyung;Kim, Hae-Dong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.1
    • /
    • pp.87-97
    • /
    • 2015
  • In general, such ground based methods are utilized to validate maneuvering and attitude control logics of a spacecraft by a simulation with a flight software at a design phase and a integrated function test with actual hardwares at a system level. Recently, varification researches using operating simulators are getting increase using compact and precise components under a ground condition. The present paper investigates and summarized the development trend of cold gas propulsion systems for the spacecraft simulators and their major performance characteristics to derive fundamental data which are necessary for a conceptual design of the simulator.

A Study on the Near-Field Simulation Method for AESA RADAR using a Single Beam-Focusing LUT (단일 빔 집속 LUT를 이용한 AESA 레이다의 근전계 시뮬레이션 기법)

  • Ju, Hye Sun
    • Journal of the Korea Society for Simulation
    • /
    • v.28 no.2
    • /
    • pp.81-88
    • /
    • 2019
  • Since the AESA radar scans and tracks a distant targets or ground, it requires a test field which meets far-field condition before flight test. In order to test beam foaming, targeting, and availability from cluttering and jamming, it is general to build a outdoor roof-lab test site at tens of meters high. However, the site is affected by surrounding terrain, weather, and noise wave and is also requires time, space, and a lot of costs. In order to solve this problem, theoretical near-field beam foaming method has proposed. However, it requires modification of associated hardware in order to construct near-field test configuration. In this paper, we propose near-field beam foaming method which use single LUT in order to calibrate the variation of TRM(transmit-receive module) which consists AESA radar without modification of associated hardware and software. It requires less costs than far-field test and multiple LUT based near-field test, nevertheless it can derives similar experimental results.