• Title/Summary/Keyword: Grinding in $H_2$

Search Result 118, Processing Time 0.023 seconds

Development of MgH2-Ni Hydrogen Storage Alloy Requiring No Activation Process via Reactive Mechanical Grinding

  • Song, Myoung Youp;Kwak, Young Jun;Lee, Seong Ho;Park, Hye Ryoung
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.12
    • /
    • pp.949-953
    • /
    • 2012
  • $MgH_2$ was employed as a starting material instead of Mg in this work. A sample with a composition of 94 wt% $MgH_2-6$ wt% Ni (called $MgH_2-6Ni$) was prepared by reactive mechanical grinding. The hydriding and dehydriding properties were then examined. An $MgH_2-Ni$ hydrogen storage alloy that does not require an activation process was developed. The alloy was prepared in a planetary ball mill by grinding for 4 h at a ball disc revolution speed of 250 rpm under a hydrogen pressure of about 12 bar. The sample absorbed 3.74 wt% H for 5 min, 4.07 wt% H for 10 min, and 4.41 wt% H for 60 min at 573 K under 12 bar $H_2$, and desorbed 0.93 wt% H for 10 min, 1.99 wt% H for 30 min, and 3.16 wt% H for 60 min at 573 K under 1.0 bar $H_2$. $MgH_2-6Ni$ after reactive mechanical grinding contained ${\beta}-MgH_2$ (a room temperature form of $MgH_2$), Ni, ${\gamma}-MgH_2$ (a high pressure form of $MgH_2$), and a very small amount of MgO. Reactive mechanical grinding of Mg with Ni is considered to facilitate nucleation, and to reduce the particle size of Mg. $Mg_2Ni$ formed during reactive mechanical grinding also increases the hydriding and dehydriding rates of the sample.

Wet Fine Grinding of Rice Husk Ash using a Stirred Ball Mill (교반 볼밀을 이용한 왕겨재의 습식 미세분쇄에 관한 연구)

  • Park, S.J.;Kim, M.H.;Choi, Y.K.
    • Journal of Biosystems Engineering
    • /
    • v.31 no.1 s.114
    • /
    • pp.33-38
    • /
    • 2006
  • This work was conducted to find the operating characteristics of an efficient wet grinding system designed to obtain fine rice husk ash powder. Once the rice husk was combusted and the thermal energy was recovered from the furnace, the ash was fed and pulverized in the grinding system resulting a fine powder to be used as a supplementary adding material to the portland cement. Grinding time (15, 30, 45 min), impeller speed (250, 500, 750 rpm), and mixed ratio (6.7, 8.4, 11.l, 20.9) were three operating factors examined for the performance of a wet-type stirred ball mill grinding system. For the operating conditions employed, mean diameter of fine ash powder, specific energy input, and grinding energy efficiency were in the range of $2.83{\sim}9.58{\mu}m,\;0.5{\sim}6.73kWh/kg,\;and\;0.51{\sim}3.27m^2/Wh$, respectively. With the wet-type stirred ball mill grinding system used in this study, the grinding energy efficiency decreased with the increase in total grinding time, impeller speed, and mixed ratio. The difference in specific surface area of powder linearly increased with logarithm in total number of impeller revolution and the grinding energy efficiency linearly decreased. Grinding time of 45 min, impeller speed of 500 rpm, and mixed ratio of 6.7 were chosen as the best operating condition. At this condition, mean particle diameter of the fine ash, grinding energy efficiency, grinding throughput, and specific energy input were $2.84{\mu}m,\;2.28m^2/Wh,\;0.17kg/h$, and 2.03kWh/kg, respectively. Wet fine grinding which generates no fly dust causing pollution and makes continuous operation easy, is appeared to be a promising solution to the automatization of rice husk ash grinding process.

A Study on the Internal Grinding to Improving the Grinding Efficiency (내면연삭(內面硏削)의 가공능률향상(加工能率向上)에 관한 연구)

  • Kim, G.H.;Kang, J.H.;An, S.O.;Park, J.K.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.2 no.6
    • /
    • pp.87-93
    • /
    • 1994
  • This paper describes on the establishment of an optimal internal grinding conditions for the purpose of improving the grinding efficiency against to the high-speed grinding. Through the fundamental grinding tests for the brittle and hardened material, we are concluded that high-speed internal grinding is effective to improve the grinding accuracy as well as the grinding efficiency. The obtained results are as follows: (1) Under the speed ratio $(V_w/V_g)$ is constant, it is possible to increase the grinding efficiency with satifying the constraint conditions. (2) Increasing the wheel velocity, surface roughness and out-roundness are improved. (3) Under the wheel depth of cut is constant and increasing the speed ratio, workpiece residual stress is decreased. The described method, in this paper, is capable of determining the optimum internal grinding conditions taking into account some constraint conditions, and practical algorithm for optimum internal grinding conditions are presented.

  • PDF

Monitoring Systems of a Grinding Trouble Utilizing Neural Networks(2nd Report) (신경망 회로를 이용한 연삭가공의 트러블 검지(II))

  • Kwak, J.S.;Kim, G.H.;Ha, M.K.;Song, J.B.;Kim, H.S.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.11
    • /
    • pp.57-63
    • /
    • 1996
  • Monitoring of grinding troble occurring during the process is classified into the quantitative data which depends upon a sensor and the qualitative knowledge which relies upon an empirical knowledge. Since grinding operation is highly related with a large amount of functional parameters, it is actually deficulty in copying wiht the grinding troubles through the process. To cope with grinding trouble, it is an effective monitoring systems when occurring the grinding process. The use of neural networks is an effective method of detection and/or monitroing on the grinding trouble. In this paper, four parameters which are derived from the AE(Acoustic Emission) signatures are identified, and grinding monitoring system utilized a back propagation learning algorithm of PDP neural networks is presented.

  • PDF

A Study of Hydroxyapatite Production from Waste Oyster Used Mechanochemical Treatment

  • Kim, Sun-Tae;Oh, Chi-Jung;Kim, Wan-Tae;Kim, Young-Sig;Kim, Myong-Jun
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.469-471
    • /
    • 2001
  • Dry grinding of a mixture of CaCO$_3$ and Ca(H$_2$PO$_4$)$_2$.$H_2O$ was conducted using a planetary ball mill in order to investigate solid state reaction for a synthesis of hydroxyapatite(Ca$_{10}$(PO$_4$)$_{6}$(OH)$_2$, HAp) through mechanochemical treatment method. The raw materials, which are composed of waste oyster and calcium biphosphate Ca(H$_2$PO$_4$)$_2$.$H_2O$, were mixed and then treated mechanochemically. The synthesis of hydroxyapatite(Ca$_{10}$(PO$_4$)$_{6}$(OH)$_2$, HAp) from the mixture was almost completed by about 60 minute grinding. The formation of HAp monophase in the ground mixture was characterized through X-ray diffraction (XRD) analysis. Moreover, the formation of HAp monophase depending on the grinding time was improved by increasing the grinding time.ime.ime.

  • PDF

The Dynamic and Machining Characteristics of Co-axial Grinding Machining System (동축 가공 연삭시스템의 운동 및 가공 특성)

  • Kim G.H.;Lee S.W.;Choi H.Z.;Choi Y.J.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.608-611
    • /
    • 2005
  • As the optical communication industry is developed, the demand of optical communication part is increasing. $ZrO_2$ ceramic ferrule is very important part which can determines the transmission efficiency and information quality to connect the optical fibers. In general $ZrO_2$ ceramic ferrule is manufactured by grinding process because the demands precision is very high. For the precision grinding machining, it is very important that the error of feeding system is improved. Therefore, we estimated the dynamic characteristics in feeding system of ultra precision co-axial grinding machining system. Then, we performed the machining characteristics experiment.

  • PDF

A Study on the Surface Grinding Characteristic of Engineering Cramics (엔지니어링 세라믹스의 평면 연삭 가공 특성에 관한 연구)

  • Kang, J.H.;Heo, S.J.;Kim, W.L.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.2 no.6
    • /
    • pp.38-49
    • /
    • 1994
  • In this study, grindability of some representative engineering ceramics are experimentally investigated using resin bond diamond wheel with conventional surface grinding machine, and proper grinding conditions which can be obtained from various experimental results are established also for mechanical components which are proper to domestic circumstances with high reliability. And through the results of experiment, it is confirmed that grinding energies of the ceramics, especially in the case of $Al_2O_3$, are lower than steel with same machining condition in the conventional grinding because of their fine-brittle fracture mode type removal process, though the ceramics are well-known to unmachinable materials. And moreover, the total pass numbers needed for spark-out process to be completed are depend on their mechanical properties because that grinding stiffness is different from each other. The grinding force, ginding power and ground surface roughness are also measured and compared. Furthermore, the experiments carried out in this study, some useful results are obtained with can guide to grind engineering ceramics with conventional surface grinding machine.

  • PDF

Structural Optimization and Performance Evaluation of Ultra Precision Co-axial Ferrule Grinding Machining System (초미세 고기능 동축가공 연삭 시스템의 구조 최적화 및 특성 평가)

  • Ahn K.J.;Lee H.J.;Kim G.J.;Kim G.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.559-560
    • /
    • 2006
  • Fiber optic connector, ferrule, is a device to connect and align fiber optics cable on fiber-optic communication system. In general $ZrO_2$ ceramic ferrule is manufactured by grinding process because the demands precision is very high. For the precision grinding machining, it is very important that structure of co-axial ferrule grinding system is optimized. In this paper, Structural analysis was performed to analyze bed and frame structure of co-axial grinding machine. Deformation and modal analysis for natural frequency was performed using ANSYS design space program to analyze structural characteristics. New improved model of bed and frame structure was proposed based on initial basic model. Therefore, we estimated the structural characteristics precision co-axial grinding machining system.

  • PDF

Selection of CBN-Wheel for Internal Grinding of LM-Guide (LM가이드 내경연삭을 위한 CBN 숫돌 선정)

  • Koo, Yang;Heo, Jung-Sik
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.2 no.4
    • /
    • pp.40-45
    • /
    • 2003
  • In this paper, to choose the optimum CBN wheel for Internal Grinding at LM Guide, among 7 types of CBN-wheels, the 2 types of CBN-wheels, which were the macrofracture CBN wheel and the microfracture CBN wheel, have been used, and the SCM420H have been used as the workpiece. The working conditions in the grinding experiments were depth-of-cut, table speed, and spindle speed for 4 types of the CBN grinding wheels, 2 types of the lubrications. By the experiments, the loading effect of the microfracture types of the CBN-wheel needed a short dressing interval and resulted in grinding wheel wear and bad surface roughness. However, a macrofracture type of CBN-wheel with the concentration of 100, CB120Q100V showed the best surface roughness quality at a low table speed for internal grinding at LM-guide.

  • PDF

Study on the Teeth Grinding Condition of SCM415H Gears (SCM 415H 기어의 치면 연삭조건에 관한 연구)

  • Kim, Lae-sung;Kim, Jongmin;Choi, Chang;Liang, Longjun;Lyu, Sung-ki
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.2
    • /
    • pp.19-24
    • /
    • 2015
  • Gears are produced through a variety of methods. In general, a metal piece is formed into the general shape of a gear through rough cuts. The gear then moves on to a more precise machine that removes more material. Grinders work via abrasion, rubbing a rough surface against a work piece at such high speeds that it literally scrapes unwanted material away from the item. Since the grinder is spinning so fast, the material is removed very quickly. This allows a grinder to remove a very small amount without taking any unwanted material with it. This study investigates the effect of grinding process parameters like grinding spindle speed and table transfer speed on the gear grade and grinding efficiency.