• Title/Summary/Keyword: Grid-connected Wind Generation

Search Result 107, Processing Time 0.022 seconds

Design and Verification of Advanced Distribution Management System using Information and Communication Convergence Technology (ICT융복합 기술을 이용한 차세대 배전계통 운영 시스템 설계 및 검증)

  • Kim, Dongwook;Park, Youngbae;Chu, Cheolmin;Jo, Sungho;Seo, Inyong
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.15 no.4
    • /
    • pp.19-29
    • /
    • 2019
  • Recently, with the rise of environmental issues and the change of government policy (Renewable Energy 3020 Implementation Plan), a large amount of renewable energy such as solar and wind power is connected to the power system, and most of the renewable energy is concentrated in the power distribution network. This causes many problems with the voltage management and the protection coordination of the grid due to the its intermittent power generation. In order to effectively operate the distribution network, it is necessary to deploy more intelligent terminal devices in the field to measure the status of the distribution network and develop various operation functions such as visualization and big data analysis to support the power distribution system operators. In addition, the failover technology must be supported for the non-stop operation of the power distribution system. This paper proposes the system architecture of new power distribution management system to cope with high penetration of renewable energy. To verify the proposed system architecture, the functional unit test and performance measurement were performed.

Development of a stand-alone solar street light controller integrated (독립형 태양광 가로등 통합제어기 개발)

  • Kim, Hee-Chul
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.9 no.6
    • /
    • pp.641-647
    • /
    • 2014
  • Stand-alone PV systems and grid-connected distribution lines operating independently with out the advantage that it is simple, and construction equipment, but the advantage of less expensive MPPT converter and production, including the energy stored in the battery charging circuit and battery for managing circuitry is required. The use of existing alternative energy in the form of combined-cycle power generation than the one adopted by the form, but primarily solar / wind power system to optimize complex to design and improve the ability to install a battery that canrationalize the price you need an integrated control system be.

Development of Operation Scenarios by HILS for the Energy Storage System Operated with Renewable Energy Source (HILS를 이용한 신재생 에너지원이 포함된 에너지 저장시스템의 운영 시나리오 개발)

  • Shin, Dong-Cheol;Jeon, Jee-Hwan;Park, Sung-Jin;Lee, Dong-Myung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.2
    • /
    • pp.224-232
    • /
    • 2018
  • According to government policy, renewable energy facility such as solar power generation is being implemented for newly constructed buildings. In recent years, the introduction of Energy Storage System (ESS) served as an emergency power for replacing an existing diesel generator has been increasing. Furthermore, in order to expand the efficacy of the ESS operation, operation in combination with renewable energy sources such as solar and wind power generation is increasing. Hence, development of the ESS operation algorithms for emergency mode as well as the peak power cut mode, which is the essential feature of ESS, are necessary. The operational scenarios of ESS need to consider load power requirement and the amount of the power generation by renewable energy sources. For the verification of the developed scenarios, tests under the actual situation are demanded, but there is a difficulty in simulating the emergency operation situation such as system failure in the actual site. Therefore, this paper proposes simulation models for the HILS(Hardware In the Loop Simulation) and operation modes developed through HILS for the ESS operated with renewable energy source under peak power reduction and emergency modes. The paper shows that the ESS operation scenarios developed through HILS work properly at the actual site, and it verifies the effectiveness of the control logic developed by the HILS.

An application of LAPO: Optimal design of a stand alone hybrid system consisting of WTG/PV/diesel generator/battery

  • Shiva, Navid;Rahiminejad, Abolfazl;Nematollahi, Amin Foroughi;Vahidi, Behrooz
    • Advances in Energy Research
    • /
    • v.7 no.1
    • /
    • pp.67-84
    • /
    • 2020
  • Given the recent surge of interest towards utilization of renewable distributed energy resources (DER), in particular in remote areas, this paper aims at designing an optimal hybrid system in order to supply loads of a village located in Esfarayen, North Khorasan, Iran. This paper illustrates the optimal design procedure of a standalone hybrid system which consists of Wind Turbine Generator (WTG), Photo Voltaic (PV), Diesel-generator, and Battery denoting as the Energy Storage System (ESS). The WTGs and PVs are considered as the main producers since the site's ambient conditions are suitable for such producers. Moreover, batteries are employed to smooth out the variable outputs of these renewable resources. To this end, whenever the available power generation is higher than the demanded amount, the excess energy will be stored in ESS to be injected into the system in the time of insufficient power generation. Since the standalone system is assumed to have no connection to the upstream network, it must be able to supply the loads without any load curtailment. In this regard, a Diesel-Generator can also be integrated to achieve zero loss of load. The optimal hybrid system design problem is a discrete optimization problem that is solved, here, by means of a recently-introduced meta-heuristic optimization algorithm known as Lightning Attachment Procedure Optimization (LAPO). The results are compared to those of some other methods and discussed in detail. The results also show that the total cost of the designed stand-alone system in 25 years is around 92M€ which is much less than the grid-connected system with the total cost of 205M€. In summary, the obtained simulation results demonstrate the effectiveness of the utilized optimization algorithm in finding the best results, and the designed hybrid system in serving the remote loads.

A Study on Decision Plan of Hosting Capacity for Distribution Feeder (배전선로 연계용량 선정방안에 관한 연구)

  • Kim, Seong-Man;Oh, Joon-Seok;Kim, Ok-Hee;Lim, Hyeon-Ok;Moon, Chae-Joo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.4
    • /
    • pp.653-660
    • /
    • 2021
  • Renewable energy resources are rapidly becoming an integral part of electricity generation portfolios around the world due to declining costs, government subsidies, and corporate sustainability goal. Interacting wind, solar, and load forecast errors can create significant unpredictable impacts on the distribution system, feeder congestion, voltage standard and reactive power stability margins. These impacts will be increasing with the increasing penetration levels of variable renewable generation in the power systems. There is a limit to the maximum amount of renewable energy sources that can be connected in a distribution feeder by the connection rule of transmission & distribution facility in Korea. This study represents the decision plans of hosting capacity for distribution feeders without the need for significant upgrades to the existing transmission infrastructure. Especially, the paper suggests and discusses the hosting capacity standard of feeder cables and minimum load calculation of distribution feeders.

Probabilistic Reliability Based HVDC Expansion Planning of Power System Including Wind Turbine Generators (풍력발전기를 포함하는 전력계통에서의 신뢰도 기반 HVDC 확충계획)

  • Oh, Ungjin;Lee, Yeonchan;Choi, Jaeseok;Yoon, Yongbeum;Kim, Chan-Ki;Lim, Jintaek
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.1
    • /
    • pp.8-15
    • /
    • 2018
  • New methodology for probabilistic reliability based grid expansion planning of HVDC in power system including Wind Turbine Generators(WTG) is developed in this paper. This problem is focused on scenario based optimal selection technique to decide best connection bus of new transmission lines of HVDC in view point of adequacy reliability in power system including WTG. This requires two kinds of modeling and simulation for reliability evaluation. One is how is reliability evaluation model and simulation of WTG. Another is to develop a failure model of HVDC. First, reliability evaluation of power system including WTG needs multi-state simulation methodology because of intermittent characteristics of wind speed and nonlinear generation curve of WTG. Reliability methodology of power system including WTG has already been developed with considering multi-state simulation over the years in the world. The multi-state model already developed by authors is used for WTG reliability simulation in this study. Second, the power system including HVDC includes AC/DC converter and DC/AC inverter substation. The substation is composed of a lot of thyristor devices, in which devices have possibility of failure occurrence in potential. Failure model of AC/DC converter and DC/AC inverter substation in order to simulate HVDC reliability is newly proposed in this paper. Furthermore, this problem should be formulated in hierarchical level II(HLII) reliability evaluation because of best bus choice problem for connecting new HVDC and transmission lines consideration. HLII reliability simulation technique is not simple but difficult and complex. CmRel program, which is adequacy reliability evaluation program developed by authors, is extended and developed for this study. Using proposed method, new HVDC connected bus point is able to be decided at best reliability level successfully. Methodology proposed in this paper is applied to small sized model power system.

A Study on the Operation Strategies of Multi-Infeed HVDC System in Jeju Island Power System (제주지역 계통특성을 고려한 다기(Multi-Infeed) HVDC 시스템 운전 방안에 관한 연구)

  • Lee, Seung-Yeup;Yoon, Min-Han
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.12
    • /
    • pp.1675-1681
    • /
    • 2017
  • As recently the demand on electric power has been increasing, the requirement of power supply reliability has been increased. Accordingly, the number of HVDC transmission systems in the world has been steadily increased, which have been installed in the power system to transmit a large capacity power to the long distant and interconnect the power grid between different countries. etc. #1 HVDC Transmission System was installed between Haenam and Jeju island in 1998, which is the first HVDC system furnished in korea. and has been operated until now. Before #1 HVDC Transmission System being installed, the power system of the Jeju Island is a isolated power system from that of Korea mainland. After the construction of #1 HVDC the system has made the Jeju power system more reliable and also been able to supply the mainland power, which was cheaper than that of Jeju island, to Jeju island. The construction of additional HVDC transmission system between mainland and the Jeju Island has been currently underway to cope with recent changes of the power market of the Jeju island, for examples the increase of power demand and the capacity of wind power generation. etc. #2 HVDC Transmission System construction was completed in 2012. #3 HVDC Transmission System will be also installed according to the plan. If all goes as planned, the Jeju power system will be operated with Multi-Infeed HVDC system connected to mainland power system. So the additional studies are needed in order to maintain the stability of the Jeju power system and get the efficiency of the Multi-Infeed HVDC system. Therefore, in this paper, the optimal operation strategies of the Multi-Infeed HVDC system between the mainland of Korea and the Jeju are suggested to ensure the stability of the power system in Jeju Island when the Multi-Infeed HVDC system is operated between two power system.