• Title/Summary/Keyword: Grid-Stiffened Structure

Search Result 5, Processing Time 0.02 seconds

Conceptual Design of Multi-Functional Structure using Rectangular Grid-Stiffened Structure for Satellite (위성용 사각형 격자강화 구조의 다기능 구조체 개념설계)

  • Seo, Hyun-Suk;Jang, Tae-Seong;Rhee, Ju-Hun;Kim, Won-Seock;Hyun, Bum-Seok;Lim, Jae-Hyuk;Hwang, Do-Soon;Lee, Sang-Kon;Cho, Hee-Keun;Han, Eun-Soo;Kim, Im-Soo;Sim, Eun-Sup
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.6
    • /
    • pp.526-534
    • /
    • 2011
  • The MFS (Mlti-Functional Structure) concept, which integrates the electronics, thermal control and structure into a single packaging system, has been developed and applied to reduce the volume and weight of the satellite. Therefore, this MFS can eliminate the bulky chassis/frames, cables and connectors of the electronic equipment. The main point of this traditional MFS is the replacement of the electrical chassis/frames with MCMs (Multi-Chip Modules) that require much costs and efforts for developing. This paper shows the new MFS concept that effectively saves the volume and weight. The structure including the thermal control and radiation shielding elements will be designed and manufactured as the rectangular grid-stiffened structure. The rectangular grid-stiffened structure is the modification of the iso-grid structure, and provides the enough spaces for putting the general PCBs without the chassis/frames.

A Study on Radiation Shielding for Grid-stiffened Multi-Functional Composite Structures (격자-강화된 다기능 복합재 구조체의 방사차폐에 관한 연구)

  • Jang, Tae Seong;Rhee, Juhun;Seo, Hyun-Suk;Hyun, Bum-Seok;Kim, Taig Young;Seo, Jung Ki
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.8
    • /
    • pp.629-639
    • /
    • 2014
  • This paper deals with an alternative multi-functional structures by using grid-stiffened composite structure with excellent bending stiffness and lightweight characteristics which is capable of easy embedding of electrical/electronic circuitry into structure. The enhancement of thermal conduction capability is made by the application of pitch-based carbon fiber. The lightweight radiation spot shielding technique is also proposed for multi-functional structures without conventional housing and the effectiveness of selective radiation shielding is validated through the proton irradiation test.

Numerical investigation of the buckling behavior of thin ferrocement stiffened plates

  • Koukouselis, Apostolos;Mistakidis, Euripidis
    • Computers and Concrete
    • /
    • v.15 no.3
    • /
    • pp.391-410
    • /
    • 2015
  • One of the most common applications of ferrocement is the manufacturing of thin stiffened plates which are prone to buckling. This study focuses on the investigation of the behavior of a ferrocement plate, stiffened in both directions by means of an appropriate grid of ribs. In the present paper detailed three-dimensional numerical Finite Element models are formulated for the simulation of the behavior of the structure under study, which are able to take into account both the geometric and material non-linearities that are present in the subject at hand (plasticity, cracking, large displacements). The difference among the formulated models lies on the use of different types of finite elements. The numerical results obtained by each model are compared and the most efficient model is determined. Finally, this model is in the sequel used for the further investigation of the effect of different parameters on the ultimate load capacity, such as the initial out-of-plane imperfection of the plate and the interaction between the axial loads in both directions.

Static analysis of a radially retractable hybrid grid shell in the closed position

  • Cai, Jianguo;Jiang, Chao;Deng, Xiaowei;Feng, Jian;Xu, Yixiang
    • Steel and Composite Structures
    • /
    • v.18 no.6
    • /
    • pp.1391-1404
    • /
    • 2015
  • A radially retractable roof structure based on the concept of the hybrid grid shell is proposed in this paper. The single-layer steel trusses of the radially foldable bar structure are diagonally stiffened by cables, which leads to a single-layer lattice shell with triangular mesh. Then comparison between the static behavior between the retractable hybrid grid shell and the corresponding foldable bar shell with quadrangular mesh is discussed. Moreover, the effects of different structural parameters, such as the rise-to-span ratio, the bar cross section area and the pre-stress of the cables, on the structural behaviors are investigated. The results show that prestressed cables can strengthen the foldable bar shell with quadrangular mesh. Higher structural stiffness is anticipated by introducing cables into the hybrid system. When the rise-span ratio is equal to 0.2, where the joint displacement reaches the minimal value, the structure shape of the hyrbid grid shell approaches the reasonable arch axis. The increase of the section of steel bars contributes a lot to the integrity stiffness of the structure. Increasing cable sections would enhance the structure stiffness, but it contributes little to axial forces in structural members. And the level of cable prestress has slight influence on the joint displacements and member forces.

Low-speed Impact Localization on a Stiffened Composite Structure Using Reference Data Method (기준신호 데이터를 이용한 보강된 복합재 구조물에서의 저속 충격위치 탐색)

  • Kim, Yoon-Young;Kim, Jin-Hyuk;Park, Yurim;Shrestha, Pratik;Kwon, Hee-Jung;Kim, Chun-Gon
    • Composites Research
    • /
    • v.29 no.1
    • /
    • pp.1-6
    • /
    • 2016
  • Low-speed impact was localized on a stiffened composite structure, using 4 FBG sensors with 100 kHz-sampling rate interrogator and devised localization algorithm. The composite specimen consists of a main spar and several stringers, and the overall size of the specimen's surface is about $0.8{\times}1.2m$. Pre-stored reference data for 247 grid locations and 36 stiffener locations are gathered and used as comparison target for a random impact signal. The proposed algorithm uses the normalized cross-correlation method to compare the similarities of the two signals; the correlation results for each sensor's signal are multiplied by others, enabling mutual compensation. 20 verification points were successfully localized with a maximum error of 43.4 mm and an average error of 17.0 mm. For the same experimental setup, the performance of the proposed method is evaluated by reducing the number of sensors. It is revealed that the mutual compensation between the sensors is most effective in the case of a two sensor combination. For the sensor combination of FBG #1 and #2, the maximum localization error was 42.5 mm, with average error of 17.4 mm.